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Machine Learning

What is “Learning”?

@ Making useful changes in our minds. -Marvin Minsky-

@ Denotes changes in the system that enable the system to make the same
task more effectively the next time. -Herbert Simon-

Machine Learning

@ Multidisciplinary field. Bio-informatics, statistics, genomics, data
mining, astronomy, Www, ...

@ Avoids rigid parametric models that may be far away from our
observations.
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Machine Learning

y=Xb+e

The assumption that an increment of one unit in the dose of an
allele has a fixed and linear effect in the phenotype is a simplistic
and unrealistic assumption.
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Machine Learning

Machine Learning in genomic selection
@ Massive amount of information.

@ Need to extract knowledge from large, noisy, redundant, missing and
fuzzy data.

@ ML is able to extract hidden relationships that exist in these huge
volumes of data and do not follow a particular parametric design.

@ Supervised Learning: we have a target output (phenotypes).
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Machine Learning

Massive Genomic Information

What does information consume in an information-rich world? it consumes
the attention of its recipients. Hence a wealth of information creates a poverty
of attention and a need to allocate that attention efficiently among the
overabundance of information sources that might consume it.

-Herbert Simon; Nobel price in Economics-

»

Overview
@ Develop algorithms to extract knowledge from some set of data in an
effective and efficient fashion, to predict yet to be observed data
following certain rules.
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Machine Learning

"What is “Learning”?
e Given: a colection of examples (data) = (phenotypes and covariates)

@ Produce: an equation or description (T) that covers all or most examples,
and predicts (P) the value, class or category of a yet-to-be observed

example.

The algorithm “learns’ relationships and associations between already
observed examples to predict phenotypes when their covariates are observed.

'Deﬁnition

a computer program is said to learn from experience - with respect to some
class of task T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.
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Machine Learning

RKHS

Artificial Neural Networks
Bayesian Neural Networks
Random Forest

Boosting

Others: radial basis functions, support vector machines, bagging, lasso
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RKHS recap

g1(X%1)
82(X2)

En(Xa)

With penalized residual sum of squares — SRR B SR S R g NEPP TS

n
gX)=ao+ Y aiKy(X—Xi)=ao+Kyax,
i=1

y=WO+Ga+e (parameterizationl)

Embedding the representation above into (1) the func-
tion to be minimized becomes:

Ly WO Ga] R~ [y— W8 —Gar] + 2 'Gax

1[0, et/ 4]

N2 2
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Artificial Neural Networks

is a transformation (linear or non-linear)
for neuron s, with w being the vector of
connection strengths between neurons

S
8i(Xgj) =fo+ Z] Wef (W53 ¥, Xg )
S =

If the network is trained using Bayesian statistics, it is called Bayesian Neural
Network (BNN)
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Artificial Neural Networks
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Deep Learning
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@
@, Add more layers. More complex models, and larger number of parameters to
estimate. Still not better than other methods.
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Ensemble methods

"Ensembles 1

@ Ensembles are combination of different methods (usually simple
models).

@ They have very good predictive ability because use complementary and
additivity of models performances.

e Ensembles have better predictive ability than methods separately.

@ They have known statistics properties (no “black boxes™).

@ “In a multitud of counselors there is saftey™

o y=co+cifi(y,X) +cafa(y, X) + ... +cmfu(y, X) +e
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Ensemble methods

Two steps EN Developing a population of 2. Comt?ining them to form a
varied models composite predictor

Also called base learners. @ Voting.

May be “weak™ models: o Estimated weight.
slightly better than random
guess.

@ Averaging.

Same/different method.

Features Subset Selection
(ESS).
@ May capture

non-linearities and
interactions.
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Ensemble methods

' Boosting and Random Forest ]
@ High dimensional heuristic search algorithms to detect signal covariates.

@ Do not model any particular gene action or genetic architecture.

@ Do not provide a simple estimate of effect size.
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Random Forest
Ensemble methods

rProperties
@ Based on classification and regression trees (CART).
@ Analyze discrete or continuous traits.

@ Implements feature selection.

e Exploits randomization.

@ Massively non-parametric.
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Random Forest
Ensemble methods

Based on Classification And Regression Trees (CART).
Use Randomization and Bagging.

Performs Feature Subset Selection.

Convenient for classification problems.

Fast computation

Simple interpretation of results for human minds.
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Ensemble methods

Random Forest

' (X)) bR (y.X) b’ (3, X)) h(w" (v, X))
\ ¥ 4

\

T A
y=2.ch' (y,X))
t=1

t is a decision tree (CART) on a bootstrapped
sample of the data set.

tm(F'm(y; X))
1
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Random Forest
Ensemble methods

Classification trees




Random Forest
Ensemble methods

Root node

Regression trees

Trees are not pruned (do not care about
overfitting of a single tree)
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Random Forest
Ensemble methods

T ~
y=2.ch' (y,X))
t=1

e t isadecision tree (CART) on a bootstrapped sample of the data set.
e The remaining observations are sent to an Out Of Bag (OOB) data set.
e The OOB will serve to monitor the loss function and to calculate the Variable Importance
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README.md

RANFOG

RanFoG is java program to implement Random Forest in a general framework

Introduction

This manual describes how to use the program RanFoG, which is focused, but not restricted to, on the analysis of
genomic data using random forest. RanFoG can perform classification and regression problems.

The code is written in Java SE 7 [1], which is an object oriented multiplatform operative system, with GNU GPL
license and an extense class library. The program is compiled to run in all kind of platforms (windows, linux, mac, ..)
that have previously installed the java virtual machine. Please, make sure your computer can run java code,
otherwise the latest java virtual machine needs to be installedd. This is available at http://www.java.com/download/.

& ogrecio / RanFog Java was chosen due to its flexibility at creating and managing list and its multiplatform characteristics.

<> Code o) Issues i Pull requests ») Actions [T Projects [0 wiki () Security [~ Insights o Settings

¥ master ~ ¥ 1branch © 0 tags Go to file Add file ~

ogrecio Update README.md 8lacics on 20 Feb 2020 O 61 commits
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Boosting

Ensemble methods

'Properties 1
@ Based on AdaBoost (Freund and Schapire, 1996).

@ May be applied to both continuous and categorical traits.

@ Biihlmann and Yu (2003) proposed a version for high dimensional
problems.

e Covariate selection
o Small step gradient descent
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Boosting

Ensemble methods

h_1is a naive predictor that minimizes a loss
function (e.g. MSE), and built on the residuals
from h_

M
g(X) = Z hm(y; X)

m=1

-1

T , : Usually, a shrinkage factor is applied
Em(X) =8m_1(X)+Vhm(y;;x) with ve(0,1) on the naive predictor, to improve

convergence to a global minimum

Random Boosting: select mtry variables at each iteration to speed up the algorithm
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Boosting

Ensemble methods

@ Choose a learner (OLS,SLS,NPR,LASSO): g(x;).

@ Select the SNP (x;) that best describes the phenotypes in the
training data (min L(y;, g(x;)).

o Keep residuals: r; = y; — g(x;)

@ Repeat n times using residuals as phenotypes.
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Boosting

Ensemble methods

Based on small gradients descent steps
Performs feature subset selection

Use simple regression

“Highest” level of shrinkage

Fast computation

Any amount of data and markers.

Big learning rate Small learning rate

VA

Tractable in “whole genome sequencing”
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Boosting

Ensemble methods
e Based on small gradients descent steps
e Performs feature subset selection Features to be tune or chose
e Use simple regression o g(-)
e “Highest” level of shrinkage & :,
e Fast computation o L(-)
e Any amount of data and markers. o convergence criterion
e Tractable in “whole genome sequencing”
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Boosting

Ensemble methods

7
°

e o
/

{M (y*M aX)
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Boosting

Ensemble methods

"In genomic selection 1
@ Apply base learners on the residuals of the previous one.
e Implement feature selection at each step.

@ Apply a small weight on each learner and train a new learner on
residuals.

@ It does not require heritance model specification (additivity, epistasis,

dominance, ...).

enome-wide predictién




B 0 0 St i n g OLS (training set) NPR (training set)
Ensemble methods : .»

Mean Squared Error
Mean Squared Error

Bias-variance trade off (training set)

75

iteration

Bias-variance trade off (testing set)

Mean Squared
Mean Squared Error

75

SNPs selected or iteration SNPs selected or iteration

PG enome-wide predicti@n



RanBOOST

H ogrecio / RanBoost

<> Code ) Issues ) Pull requests (*) Actions [71] Projects [0 wiki () Security [~ Insights

Settings
¥ main ~ ¥ 1branch © 0tags Go to file Add file ~

ogrecio Add files via upload c29e3f4 15 days ago O 4 commits
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Bagging

Ensemble methods

h_1is a predictor on a bootstrapped sample on

M
gx)= 2 hm(y;X) the data, divided by M (averaging).

m=1
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Bagging

Ensemble methods

‘Brief description
y = co+cifi(y,X) +e2fa (¥, X) + ... +¢ifi(y, X) + ... +emfu (¥, X) +e

o Perform bootstrap on data: ¥* = (y, X).
o Build a CART (fi(y, X) = h(x)).

@ Repeat M times to reduce residuals by a factor of M.

@ Average estimates ¢y = U; ¢; = ﬁ




Ensemble methods

" Are ensembles truly complex?
They appear so, but do they act so?

Controling complexity in ensembles is not as simple as merely count
coefficients or assume prior distrbutions.

Many ensembles do not show overfitting (Bagging, Random Forest).

Control the complexity of the ensembles using cross-validation (There
exist more complicated ways).

o Tune the number of ensembles constructed.
o Use more or less complex “base learners”.

In general, ensembles are rather robust to overfitting.
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Ensemble methods

Use simple models.

Use many models.

Interpretation of many models, even simple model, may be much harder than

with a single model.

e Ensembles are competitive in accuracy though at a probable loss of
interpretability.

e Too complex ensembles may lead to overfitting.
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Comparison between methods

Gonzalez-Recio et al. (2014)

0. Gonzdlez-Recio et al. / Livestock Science 166 (2014) 217-231

g(x)

1 strong learner Many weak learners

M
g(x)=a,+Ka g(x)= > w,h,(y:X)
m=1

w,, determined by / \ w,, are determined

variance explained, /
plus a shrinkage factor/

/

Wy =1/M

hy(y;X) = CART based on
bootstrapped

/ sample data

individually for
\ each observation
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Comparison between methods

e Reinoso et al. (in book “Genomic
prediction of complex traits”)

Genomic

Prediction RE-

ComplexT

Methods and Protocols CNN -

= i § BAYES B -
Systematic review and meta-analysis for the caLup-

LASSO~

predictive performance (mean squared error) [ess

using a Thurstonian model.

BL-

SVM -

BAYES A-

RR-

Animals

BNN -
BOOST-

BL-

BAYESB-
BAYES C-

BAYES A~

CLASS . Bayessian . Ensemble . Neural network
i Classic . Kernel . Other

Might be biased on researcher’s preferences biased!
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Comparison between methods

c 5 0 All Animals Plants
e Reinoso et al. (in book “Genomic o -
. . 5 NB- N8 - 3 BAYES A~ &
prediction of complex traits”) on- e awvese- 1
e YES B - BL - wBSR - 4
Genomic ::v: j- BAYES B- ANN- &
Predictiof WBSR - BAGG - BAYES C- -«
ComplexT BAVES G- RE- GBLUP- |
ﬁ:w BAGG - BAYES A- LA :
ANN - ANN - BL-
c 3 . 3 ' g ] “ CNN - <3
Systematic review and meta-analysis for the ik ol || om- 4
. . . RE- 5 LS ssvs- -
predictive performance (pearson correlation) BooeT
CNN- goiqf '
using a Thurstonian model. ot e IRIRE
- 0 2

RR~-

BOOST- - Bayessian - Ensemble . Neural network
KNN - - CLASS
| | . Classic . Kernel . Other

Might be biased on researcher’s preferences biased!
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Considerations

e Machine Learning methods need of a thorough tuning of hyperparameters.
Dedicate some time to tune them using internal and external cross-validation

e Usually, work better than ‘traditional’ models.

e Difficult to interpret from a biological point of view (but linear models are also an
unrealistic simplification of biology).

e Some can be very fast, and easy computational pipelines can be implemented for
genomic prediction (e.g. Random Boosting).
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Considerations

e Not “one case fits all”.
e https://engraved.ghost.io/why-machine-learning-algorithms-are-hard-to-tune/

Why machine
learning
algorithms are
hard to tune and
how to fax it

How we can make
machine learning
algorithms
tunable
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