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MCMC methods
Exact posterior inference may not be tractable in most cases, because the integration 
may not always be feasible

MCMC provides a general method by drawing values of the parameters (θ) from an 
approximate distribution and then correcting those draws to better approximate the 
target posterior distribution



Gibbs sampling
Gibbs sampling is one of the most used McMC algorithm

Main idea: Given a multivariate distribution it is simpler to sample from a conditional 
distribution than to integrate over a joint distribution. Iterative process

Toy example:

Step 1. Initialize residual variance and mean

Step 2. Sample residual variance from 

Step 3. Sample mean from



Gibbs Sampling - Toy example
To estimate the mean and variance of a normal distribution

Simple_example_GS1.R



Diagnostics
After running an MCMC analysis, it is important to assess its performance

Three aspects:

● Mixing
● Burn-in
● Run length



Visually inspecting the chain: Mixing
Trace plot: displays the number of iteration vs the value of the parameter 

To check if the chain explore the full shape of the target distribution (marginal 
posterior distribution)

It is an important tool for assessing mixing of a chain

Coda: traceplot



Traceplot



Visually inspecting the chain: running mean



Visually inspecting the chain: Mixing
Density plot of the samples of the conditional posterior distribution of the parameters

Coda: densplot



Autocorrelations
In MCMC, each sample depends on the one before - autocorrelation

We can check the autocorrelations between the samples

Lag-k autocorrelation: correlation between every sample and the sample k samples after

It decreases as k  increases; if it remains high → high level of autocorrelation → poor 
mixing

Solution: thinning  and increase the length of the chain → more efficient storage

Coda: autocorr, autocorr.diag, autocorr.plot



Autocorrelation plot



Burn-in
It is possible to assess it by:

● Visually inspecting the trace plots
● Visually inspecting the running means
● Use of convergence tests such as:

○ Geweke diagnostic
○ Heidelberger-Welch
○ Raftery-Lewis
○ Gelman-Rubin



Checking the convergence
The convergence of an MCMC algorithm in important for the correct estimation of the 
posterior distribution of the parameters of interest

Problem: the convergence may not be diagnosed as clearly as in optimization methods

It is important to specify:

- The length of the burnin period 
- The number of samples that will be used for the posterior analysis
- Specification of the thinning interval

Conditional posterior distribution → Marginal posterior distribution of the parameters



Geweke’s convergence test (Geweke, 1992)
Test for equality of the means of the first and last part of a Markov chain (by default 
the first 10% and the last 50%)

 If the samples are drawn from the stationary distribution of the chain, the two means 
are equal and Geweke’s statistic has an asymptotically standard normal distribution

The test statistic is a standard Z-score: the difference between the two sample means 
divided by its estimated standard error

The Z-score is calculated under the assumption that the two parts of the chain are 
asymptotically independent, which requires that the sum of frac1 and frac2 be strictly 
less than 1.



Geweke’s convergence test (Geweke, 1992)
CODA: geweke.diag; geweke.plot



Raftery and Lewis
Diagnostic based on a criterion of accuracy of estimation of the quantile q

It is intended for use on a short pilot run of a Markov chain

The number of iterations required to estimate the quantile q (2.5%) to within an accuracy 
of +/- r (0.005) with probability p  (0.95) is calculated (Nmin and N)

Positive autocorrelation will increase the required sample size above this minimum value.

An estimate I (the ‘dependence factor’, I=N/Nmin, estimate of the thinning interval) of the 
extent to which autocorrelation inflates the required sample size is also provided:

Values of I larger than 5 indicate strong autocorrelation 



Raftery and Lewis

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95 
                                                    
              Burn-in  Total Lower bound  Dependence
              (M)      (N)   (Nmin)       factor (I)
 pmu.samples  2        3666  3746         0.979     
 pvar.samples 2        3666  3746         0.979     



Heidelberger -Welch diagnostic
Based on the Brownian bridge theory

It tests whether the stationarity of the Markov chain is attained using the values from 
the MCMC output

It is first applied to the whole chain, then after discarding the first 10%, 20%, 30%..., till 
either the null hypothesis is accepted or 50% of the chain has been discarded → failure 
of the stationary test and a longer chain is needed

CODA package: heidel.diag 



Heidelberger -Welch diagnostic
            Stationarity start     p-value

             test         iteration        

pmu.samples  passed       1         0.885  

pvar.samples passed       1         0.568                                  

             Halfwidth Mean Halfwidth

             test                    

pmu.samples  passed    26.5 0.00695  

pvar.samples passed    99.5 0.09430 



Gelman and Rubin diagnostic
It implies checking the convergence of two chains

It is an ANOVA-type diagnostic, calculating a shrinking factor (R):

- When R close to 1 indicate convergence

CODA: gelman.diag; gelman.plot



High Posterior Density interval
Credible intervals: interval within which a parameter value falls with a particular 
probability

- There is a 95% of probability that the parameter lies in the interval
- Narrowest credible interval is the most interesting one → highest density interval

Coda: HPDinterval



High Posterior Density interval
                lower     upper

pmu.samples  25.89846  27.11789

pvar.samples 90.98152 108.62931

attr(,"Probability")

[1] 0.95


