
PostGibbs analysis
Evangelina López de Maturana & Oscar González-Recio

Topics

MCMC methods

Overview

Gibbs sampling

Simple example

Convergence
diagnostics

Visual inspection
of the chains

How to generate
the plots

How to perform
the diagnostic
tests

MCMC methods
Exact posterior inference may not be tractable in most cases, because the integration
may not always be feasible

MCMC provides a general method by drawing values of the parameters (θ) from an
approximate distribution and then correcting those draws to better approximate the
target posterior distribution

Gibbs sampling
Gibbs sampling is one of the most used McMC algorithm

Main idea: Given a multivariate distribution it is simpler to sample from a conditional
distribution than to integrate over a joint distribution. Iterative process

Toy example:

Step 1. Initialize residual variance and mean

Step 2. Sample residual variance from

Step 3. Sample mean from

Gibbs Sampling - Toy example
To estimate the mean and variance of a normal distribution

Simple_example_GS1.R

Diagnostics
After running an MCMC analysis, it is important to assess its performance

Three aspects:

● Mixing
● Burn-in
● Run length

Visually inspecting the chain: Mixing
Trace plot: displays the number of iteration vs the value of the parameter

To check if the chain explore the full shape of the target distribution (marginal
posterior distribution)

It is an important tool for assessing mixing of a chain

Coda: traceplot

Traceplot

Visually inspecting the chain: running mean

Visually inspecting the chain: Mixing
Density plot of the samples of the conditional posterior distribution of the parameters

Coda: densplot

Autocorrelations
In MCMC, each sample depends on the one before - autocorrelation

We can check the autocorrelations between the samples

Lag-k autocorrelation: correlation between every sample and the sample k samples after

It decreases as k increases; if it remains high → high level of autocorrelation → poor
mixing

Solution: thinning and increase the length of the chain → more efficient storage

Coda: autocorr, autocorr.diag, autocorr.plot

Autocorrelation plot

Burn-in
It is possible to assess it by:

● Visually inspecting the trace plots
● Visually inspecting the running means
● Use of convergence tests such as:

○ Geweke diagnostic
○ Heidelberger-Welch
○ Raftery-Lewis
○ Gelman-Rubin

Checking the convergence
The convergence of an MCMC algorithm in important for the correct estimation of the
posterior distribution of the parameters of interest

Problem: the convergence may not be diagnosed as clearly as in optimization methods

It is important to specify:

- The length of the burnin period
- The number of samples that will be used for the posterior analysis
- Specification of the thinning interval

Conditional posterior distribution → Marginal posterior distribution of the parameters

Geweke’s convergence test (Geweke, 1992)
Test for equality of the means of the first and last part of a Markov chain (by default
the first 10% and the last 50%)

 If the samples are drawn from the stationary distribution of the chain, the two means
are equal and Geweke’s statistic has an asymptotically standard normal distribution

The test statistic is a standard Z-score: the difference between the two sample means
divided by its estimated standard error

The Z-score is calculated under the assumption that the two parts of the chain are
asymptotically independent, which requires that the sum of frac1 and frac2 be strictly
less than 1.

Geweke’s convergence test (Geweke, 1992)
CODA: geweke.diag; geweke.plot

Raftery and Lewis
Diagnostic based on a criterion of accuracy of estimation of the quantile q

It is intended for use on a short pilot run of a Markov chain

The number of iterations required to estimate the quantile q (2.5%) to within an accuracy
of +/- r (0.005) with probability p (0.95) is calculated (Nmin and N)

Positive autocorrelation will increase the required sample size above this minimum value.

An estimate I (the ‘dependence factor’, I=N/Nmin, estimate of the thinning interval) of the
extent to which autocorrelation inflates the required sample size is also provided:

Values of I larger than 5 indicate strong autocorrelation

Raftery and Lewis

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

 Burn-in Total Lower bound Dependence
 (M) (N) (Nmin) factor (I)
 pmu.samples 2 3666 3746 0.979
 pvar.samples 2 3666 3746 0.979

Heidelberger -Welch diagnostic
Based on the Brownian bridge theory

It tests whether the stationarity of the Markov chain is attained using the values from
the MCMC output

It is first applied to the whole chain, then after discarding the first 10%, 20%, 30%..., till
either the null hypothesis is accepted or 50% of the chain has been discarded → failure
of the stationary test and a longer chain is needed

CODA package: heidel.diag

Heidelberger -Welch diagnostic
 Stationarity start p-value

 test iteration

pmu.samples passed 1 0.885

pvar.samples passed 1 0.568

 Halfwidth Mean Halfwidth

 test

pmu.samples passed 26.5 0.00695

pvar.samples passed 99.5 0.09430

Gelman and Rubin diagnostic
It implies checking the convergence of two chains

It is an ANOVA-type diagnostic, calculating a shrinking factor (R):

- When R close to 1 indicate convergence

CODA: gelman.diag; gelman.plot

High Posterior Density interval
Credible intervals: interval within which a parameter value falls with a particular
probability

- There is a 95% of probability that the parameter lies in the interval
- Narrowest credible interval is the most interesting one → highest density interval

Coda: HPDinterval

High Posterior Density interval
 lower upper

pmu.samples 25.89846 27.11789

pvar.samples 90.98152 108.62931

attr(,"Probability")

[1] 0.95

