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Background

Complex traits are likely to be influenced by many genomic regions, often interacting

among them

Genome prediction of ‘total’ genetic effects is motivated by the non-linear relationship

between outcomes and genotypes

State-of-the art statistical approaches (kernels based) capturing also non-additive
effects, either parametrically or non-parametrically (Morota and Gianola, 2014)
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Background

=i

To find the relationships between a set of independent/predictor variables
(inputs), and the set of dependent variables (responses/outputs):

y=f(x) +e

The goal is to estimate an unknown (desired) continuous and real valued

function f(x)
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Background

The parametric regression function has a rigid structure comprising a set of
assumptions which may not be met in genomic selection problems

Sample size (n) is usually smaller than the number of predictors (m2)--> large 72 small

n problem (“the curse of dimensionality” (Bellman 1961))

Departures from linearity can be addressed by semiparametric approaches, such as
Reproducing Kernel Hilbert Space (RKHS) regressions or neural networks
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Background - Nonparametric regression
No explicit parameterization is given y =f ( x) -|— e

It does not assume major hard-to-satisfy hypotheses on the regression function

It makes minimal assumptions about the dependency of the outputs on the input

variables

Generally speaking, all kernel methods differ from each other in the:

e Choice of f(x)
e Type of regularization to balance complexity and goodness of fit
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Bound on the risk

Confidence interval Empirical Risk

small Complexity of the function class large

Fig. 2.2: Schematic illustration of bound on the risk as a summation of the empirical risk and of the
confidence interval. Increasing the complexity of the function class decreases the empirical
risk but upper bound of the risk is increased due to the increase of confidence interval.
The smallest bound of the risk is a trade off between the empirical risk and complexity
(confidence).
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Reproducing Kernel Hilbert Spaces (RKHS)

A Hilbert space is inner product (type of normed vector) space which satisfies
completeness (defined distance function) d(z,y) = |l — yl| =

The aim of GP is approximating the true genetic signal (g) as an unknown function of

genetic effects

g=1g.}

The function of genetic effects may be viewed as the average phenotypic value of
individuals with genotype x; without restricting the form of & ( Xi)

g(x) = E(ylx=x)

Morota and Gianola (2014
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RKHS

Procedure:

e Search of a function
e Loss function: residual sums of squares
e Penalty: squared norm of g under a Hilbert space

Objective function to be minimized with respect to g:

[(gM) = lly—gll >+l gll 3,
/ ~
Penalization parameter Hilbert space
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RKHS- kernel ridge regression

Following Kimeldorf and Wahba (1971), the objective functiong( X) reduces to a

linear function K where:

K is an n x n kernel constructed from the observed data

& is an nx Ivector of regression coefficients to be estimated by minimizing
To regularize the() , to ensure

l( (XIX) = ( y— Ka ) l( Yy — Ko ) + <« that optimal solutions lie in a

finite dimensional space

Minimizing (taking the derivative with respect to X and setting to 0)

a= (K+Al) ~ly g= Ka
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RKHS- kernel ridge regression

First introduced in QG by Gianola et al (2006), Gianola and van Kaam (2008) in the
context of a Bayesian mixed effects modelling.

Gonzalez-Recio et al. (2008) first applied RKHS to genomic prediction.

de los Campos et al. (2010) developed efficient Gibbs sampling algorithms for RKHS

regression

The basic idea underlying the RKHS approach to GS is to use the matrix of markers X
to build a covariance structure among genetic values
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Reproducing Kernel Hilbert Spaces

y=ul+Xp+Ka+e

X'R™'X XRK, B, [ XRy
K:‘?R_lx K;?R_lKJ? +LK.»‘? d.afr ) K;rR_IF




Kernel

In non-parametric statistics, a kernel is a weighting function with the following

characteristics:

e Symmetrical
e Area under the curve of the function must be equal to 1

It handles non-linear relationships between a pair of random variables
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Kernel

Smoothing parameter to regularize the similarity

W (X, x,) = f(hdist(x,,x,))

Distance between the individuals
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Kernel




RKHS-BLUP

De los Campos et al (2009) brought up the important connection between RKHS
regression and BLUP a ~ N(0, Ao2)

MME:
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RKHS-BLUP

Transforming the additive genetic effects as

BLUP of additive effects can be viewed as a regression on pedigree or on additive

genomic relationship kernels (Morota and Gianola, 2014)
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RKHS - BLUP

' — ' - A~ r = ’ ’ 0'3 —1
K,R'X K,R'K,+LK,|a,| [K/R'Y Z’X Z7Z+%5K

X'R™'X XRK, }{ﬁ“} _ {X'R"y } [X'X X'Z

(1) (2)

(1) It is used instead of (2) because inverting K may not be trivial
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RKHS-GBLUP

y=g+e;g~N(O, Faz)

| |-

True genetic signal True genomic relationship matrix
among individuals (unknown)

g is approximated with a linear function “

nind x m markers
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RKHS-GBLUP

g has to be predicted with 2 conditions:

Morota and Gianola (2014)
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RKHS-GBLUP

Assuming that gi is parameterized as [SlPBENTE | where x and B are treated as
random and independent, then, under HWE:

E(x.)=2p. ( ) = —
(x;) =2p, Var( x ; 2pj | P
Considering that all markers have the same variance (homogeneous marker variance):
%
6ﬁ= "
22} p{1-p J)\
= p;is the minor allele frequency
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RKHS-GBLUP

Substituting 2 _ % i BLUP(3)

Results in:

BLUP(§) = > where [CRSIERRSSEIRY (V/anRaden, 2008)
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BLUP estimates of the markers

GBLUP is linked to BLUP of marker regression coefficients

Suppose that the phenotype-genotype mapping function is

and the genetic effect is ?ﬂ\

genotypes  Allele substitution effects

BLUP(B) - xr (\)J)_l BLUP(g)

See Morota and Gianola (2014) for more
details
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Backsolving of marker effects from GBLUP estimates

BLUP of marker coefficients once f{ is obtained from GBLUP (backsolving):

Ridge regression with markers treated as random effects is mathematically equivalent
to BLUP (Ruppert et al, 2003)

However, predictive ability differed when applied to real data (Morota and Gianola,
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Single step (Misztal et al, 2009; Legarra et al, 2009)

It is considered a genomic relationship-based method
Not all animals may be genotyped

Genomic relationships are identical by state (IBS) because they account for the
probability that two alleles randomly picked from each individual are identical,

independently of origin.

Pedigree relationships are identical by descent (IBD) because they consider that the
shared alleles come from the same ancestor in a base population
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Single step (Misztal et al, 2009; Legarra et al, 2009)

H matrix is a relationship matrix constructed with SNP markers and pedigree, where
the SNP information is projected to the individuals that are not genotyped (subscript 1

for non-genotyped animals, 2 otherwise)

B [ var (uz) cov (111,112)]

cov (ug,up) var (uz)

A+ ApAL (G — Axn) AL Axn ApALG
GAL) Ay G
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Single step

Aguilar et al (2010); Christensen and Lund (2010) derived a method to directly
construct the inverse of H

H properties include being always semi-positive definite and being positive definite
and invertible if G is invertible

to avoid double-counting
of pedigree information
for genotyped animals
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Single step

G and A,, should be compatible (genomic and genetic bases should be at the same

level):

e Compatibility can be understood as both matrices referring to the same genetic

base and to the same genetic variance
e genomic relationships can be biased if G is constructed based on allele
frequencies other than the ones from the base population (VanRaden, 2008)
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Single-step

In a typical breeding program, average elements in A,, are > than in G when computed
with current allelic frequency (it does not account for past selection)

Possible solutions:

- G should be calculated using the same allelic frequencies as in the base

population of the pedigree (difficult)
- Align G and A,, (average of the diagonal and off-diagonal elements) (Meyer et al
2018)
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Single-step

A'lis often built ignoring the inbreeding, although algorithms to built G'and A,,
considered it; to avoid convergence problems due to the unbalance between A2? and

-1
A22

controls inflation due to incompleteness of pedigree (unknown parent groups)

controls additive genetic variance
0.7 for beef and dairy cattle ssGBLUP evaluations, from 0.5 to 0.8 for pig evaluations

(Lourenco et al, 2020)
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Single-step

alfa=0.95,beta= 0.05, tau=1, and omega=0.70 (Lourenco et al, 2014)

it accounts for the fact that genotyped animals are
more related through A than G

(.LIG + {[?Agg)_l — LLJA.;_,_; ]
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http://nce.ads.uga.edu/html/projects/programs
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