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Quantitative genetics
Linking genotypes and phenotypes through genetic similarity among individuals = 
covariance between relatives (Wright,1921) is a fundamental concept in quantitative 
genetics 

Main focus nowadays is to statistically model variation in DNA sequences affecting 
phenotypic variation in quantitative traits

Less interest in understanding the biological pathways (molecular genetics domain)

Genome-based prediction aims to predict unobserved values by regressing phenotypes 
on measures of genetic resemblance, based on DNA data



Resemblance among relatives
To calculate the resemblance among relatives x and y:

Heredity seems to act in a linear manner 



Resemblance among relatives
Degree of relationship between two related individuals is:

● The probability that a gene in one subject is identical by descent to the 

corresponding gene (i.e., in the same locus) in the other individual
○ Identical by descent (IBD): both copies of the same ancestral gene

○ Identical by state (IBS): identical through separate mutations



Measurements
Kinship coefficient between two individuals (fx,y) is:

● a simple measure of relatedness
● defined as the probability that a pair of randomly sampled homologous alleles are 

IBD
● indicates the probability that an individual receives the same allele from both 

parents because they are related (= inbreeding coefficient)
● fx,y = Fanimal = ½ abetween parents , where abetween parents is the additive relationship coefficient between 

parents



Kinship coefficient (autogamy)

                                                   , where                is the inbreeding coefficient of ind A 

Genotype of the individual A1 A2                        A1 A2

Possible genotypes: A1 A1 ,  A1 A2 ,  A2 A1,  A2 A2



Relationship between the kinship coefficient and the relationship coefficient

                                                  
Kinship coefficient Additive relationship

Sire-daughter 0.25 0.5

Grandsire-daughter 0.125 0.25

Full sibs 0.25 0.5

Half sibs 0.125 0.25



Resemblance among relatives
Considering the additive genetic variance:

                                               ; 

                                    , if i and j are not related



Numerator relationship matrix

Animal Sire Dam



BLUP
Model:

MME:

A: Pedigree-based relationship matrix



A-1

We can compute it directly using the Henderson’s rules:

Animal model

● Both parents are known:
● We add 2 in the position (i,i) of the matrix
● We add 1 in the position (s,i), (i,s), (d,i), (i,d) of the matrix
● We add ½ in the position (s,s), (s,d), (d,s), (d,d) of the matrix

● Only one parent is known:
● We add 4/3 in the position (i,i) of the matrix
● We add -2/3  in the position (s,i), (i,s), (d,i), (i,d) of the matrix
● We add ⅓ in the position (s,s), (s,d), (d,s), (d,d) of the matrix

● Both parents are unknown:
● We add 1 in the position (i,i) of the matrix



Moving to genomic resemblance
Genome-based prediction can be considered a field in the quantitative genetics area 
aiming to predict unobserved values by regressing phenotypes on measures of genetic 
resemblance obtained from germline DNA genotypes

Early attempts in the 80’s with few molecular information

Meuwissen et al (2001) paved the way in the joint use of whole-genome markers for 
genomic prediction

Gianola et al (2003) were pioneers in considering the resemblance of individuals at the 
genomic level



Genetic (genomic) resemblance



GBLUP

Genome-based relationship matrix

G

Model:

MME:



GBLUP
G has a covariance structure for the genetic values of the i-th and j-th individuals



GRM examples - VanRaden et al, 2008 (1)
Linear kernel

X is an incidence matrix 
with the genotypes of each 
individual for each SNP
Dimension: # ind x # SNPs

It scales G to be analogous to the numerator relationship matrix A

It is assumed that  the marker variance is homogeneous

 xij  − 2pj



GRM examples - VanRaden et al, 2008 (1)
Genomic inbreeding coefficient for ind j: can be obtained as Gjj-1 

Genomic relationships between individuals j and k (analogous to the relationship 
coefficients of Wright (1922)) can be obtained as Gjk



GRM examples - VanRaden et al 2008 (2)

 xij  − 2pj



GRM examples - Yang et al, 2010
The same as Vanraden (2)



GRM examples: Gaussian kernel
Non-linear kernel

It can capture small complex interactions and non-additive variation (de los Campos, 
et al, 2010)

When the individuals are related, the value is close to 1. Otherwise, close to 0

h is the tunning parameter 



Gaussian kernel



Gaussian kernel
Pérez-Elizalde et al (2015) shows how to select the Bandwidth Parameter (h or scale 
parameter) in a Bayesian Kernel Regression Model

This strategy was in general superior to the kernel averaging strategy proposed by de 
los Campos et al (2010), based on defining a set of kernels based on different values of 
h



GRM examples: Speed’s GRM (LDAK)
A method for weighting markers to account for LD

It scales SNP genotypes according to local patterns of LD

It computes optimal SNP weights considering local SNP correlation caused by LD

kj is the weighting factor of the j-th SNP (LDAK determines SNP weightings so that 
the sum of the values in row i times the SNP weightings equals (approximately) one)



Some considerations when building GRM
Matrix G may be singular, for example, if the number of markers does not exceed the 
number of individuals genotyped

A simple solution could be to add a small number (i.e., 0.00001) to diagonal elements 
of each GRM to avoid near singularity problems



Some considerations when building GRM
Sub-population or ancestry-related positive assortative mating (Risch et al., 2009; 
Sebro et al., 2010) results in population stratification, and is seen at all loci where the 
allele frequency differs between sub-populations.

Although there is no genetic correlation between spouses (random mating) within 
sub-populations, when the entire stratified population is considered, there is a 
significant positive genetic correlation between spouses, denoted by Wright's 
coefficient of inbreeding F.

There is increased genetic covariance between relatives in the presence of population 
stratification.



Some considerations when building GRM
When QTLs are in strong LD, using the unweighted genomic relationship matrix in 
G-BLUP can cause upward bias in the heritability estimation (Speed et al. 2012; 
Fernando et al. 2017; Legarra 2016)

Varying degree of LD between SNPs and QTLs in each may lead to biased heritability 
estimate (Yang et al. 2015; Gusev et al. 2013; Yang et al. 2017)



Practical session:
Building GRM in R 



Overview
SNPready R package 

G.matrix → Four types of GRM

● VanRaden (2008)                                                        , 
● Yang (2010)
● Yang’s modified
● Gaussian kernel



Van Raden

G_vanRaden <- G.matrix(X_alleles, method="VanRaden", plot = TRUE)

X_alleles don’t need to be centered 



Yang

G_Yang <- G.matrix(X_alleles, method="UAR", plot = TRUE)

X_alleles don’t need to be centered 



Yang - modified

G_Yang <- G.matrix(X_alleles, method="UARadj", plot = TRUE)

X_alleles don’t need to be centered 



Gaussian kernel

G_Gaussian <- G.matrix(X_alleles, method="GK", plot = TRUE)

X_alleles don’t need to be centered 


