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Quantitative genetics

Linking genotypes and phenotypes through genetic similarity among individuals =
covariance between relatives (Wright,1921) is a fundamental concept in quantitative
genetics

Main focus nowadays is to statistically model variation in DNA sequences affecting
phenotypic variation in quantitative traits

Less interest in understanding the biological pathways (molecular genetics domain)

Genome-based prediction aims to predict unobserved values by regressing phenotypes
on measures of genetic resemblance, based on DNA data
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Resemblance among relatives

To calculate the resemblance among relatives x and y:

cov( Px,Py) :cov( Gx+ Ex, Gy+ Ey) :cov( Gx, Gy) + cov( Ex,Ey)

Heredity seems to act in a linear manner
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Resemblance among relatives

Degree of relationship between two related individuals is:

e The probability that a gene in one subject is identical by descent to the

corresponding gene (i.e., in the same locus) in the other individual

o Identical by descent (IBD): both copies of the same ancestral gene

o Identical by state (IBS): identical through separate mutations
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Measurements

Kinship coefficient between two individuals (fx,y) is:

e asimple measure of relatedness
e defined as the probability that a pair of randomly sampled homologous alleles are
IBD

® indicates the probability that an individual receives the same allele from both

parents because they are related (= inbreeding coefficient)

e f =F =lga , Where a is the additive relationship coefficient between
X,y animal between parents between parents

parents
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Kinship coefficient (autogamy)

f AA 2(1 + F ) where F A is the inbreeding coefficient of ind A

Genotype of the individual A, A,

\/

Possible genotypes: Aj A;, A/ A,, A A




Relationship between the kinship coefficient and the relationship coefficient

Kinship coefficient Additive relationship
Sire-daughter 0.25 0.5
Grandsire-daughter 0.125 0.25
Full sibs 0.25 0.5
Half sibs 0.125 0.25
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Resemblance among relatives

Considering the additive genetic variance:
cov(Ai,Al.) =aiiafl ;A= 1+ FA
cov(Ai, gbi) =0
cov( A o Aj) =(), if i and j are not related




Numerator relationship matrix

Animal Sire Dam

1
2
3
4
5
6
7
8

075 075
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BLUP

Model: = Xﬂ +lo +e€

MME:

A: Pedigree-based relationship matrix
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A-1
We can compute it directly using the Henderson’s rules:

Animal model

e Both parents are known:

e We add 2 in the position (i,i) of the matrix

e We add 1 in the position (s,i), (i,s), (d,i), (i,d) of the matrix

e We add % in the position (s,s), (s,d), (d,s), (d,d) of the matrix
e Only one parent is known:

e We add 4/3 in the position (i,i) of the matrix

e We add -2/3 in the position (s,i), (i,s), (d,i), (i,d) of the matrix

e We add ' in the position (s,s), (s,d), (d,s), (d,d) of the matrix
e Both parents are unknown:

e We add 1 in the position (i,i) of the matrix
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Moving to genomic resemblance

Genome-based prediction can be considered a field in the quantitative genetics area
aiming to predict unobserved values by regressing phenotypes on measures of genetic
resemblance obtained from germline DNA genotypes

Early attempts in the 80’s with few molecular information

Meuwissen et al (2001) paved the way in the joint use of whole-genome markers for
genomic prediction

Gianola et al (2003) were pioneers in considering the resemblance of individuals at the
genomic level
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Genetic (genomic) resemblance




GBLUP

Model: y:Xﬂ+Ia+e

MME:

Genome-based relationship matrix

enome-wide predicti@én



GBLUP

G has a covariance structure for the genetic values of the i-th and j-th individuals

Cov (uz, w7} =as Ky (e.203) (e >'0)
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GRM examples - VanRaden et al, 2008 (1)

Linear kernel

X is an incidence matrix
with the genotypes of each
individual for each SNP
Dimension: # ind x # SNPs

It scales G to be analogous to the numerator relationship matrix A

It is assumed that the marker variance is homogeneous
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GRM examples - VanRaden et al, 2008 (1)

Genomic inbreeding coefficient for ind j: can be obtained as G]].—l

Genomic relationships between individuals j and k (analogous to the relationship
coefficients of Wright (1922)) can be obtained as ij

ij
\/ij \/ Gkk
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GRM examples - VanRaden et al 2008 (2)

X, ~ ij




GRM examples - Yang et al, 2010

The same as Vanraden (2)

(xij — 2p;)(xig — 2p;)
2pi(1 = pi)
x,:“’,-— (1+2p;)x; + .‘Zp,~2
2p;(1 = p;)

v j#k

L j=k
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GRM examples: Gaussian kernel

Non-linear kernel

It can capture small complex interactions and non-additive variation (de los Campos,
et al, 2010)

2
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)

L7 (xi
K, (5,,) = exp(-——

When the individuals are related, the value is close to 1. Otherwise, close to 0

his the tunning parameter
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Gaussian kernel
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Gaussian kernel

Pérez-Elizalde et al (2015) shows how to select the Bandwidth Parameter (h or scale
parameter) in a Bayesian Kernel Regression Model

This strategy was in general superior to the kernel averaging strategy proposed by de
los Campos et al (2010), based on defining a set of kernels based on different values of

h
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GRM examples: Speed’s GRM (LDAK)

A method for weighting markers to account for LD
It scales SNP genotypes according to local patterns of LD

It computes optimal SNP weights considering local SNP correlation caused by LD

kj is the weighting factor of the j-th SNP (LDAK determines SNP weightings so that
the sum of the values in row i times the SNP weightings equals (approximately) one)
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Some considerations when building GRM

Matrix G may be singular, for example, if the number of markers does not exceed the

number of individuals genotyped

A simple solution could be to add a small number (i.e., 0.00001) to diagonal elements

of each GRM to avoid near singularity problems
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Some considerations when building GRM

Sub-population or ancestry-related positive assortative mating (Risch et al., 2009;
Sebro et al,, 2010) results in population stratification, and is seen at all loci where the
allele frequency differs between sub-populations.

Although there is no genetic correlation between spouses (random mating) within
sub-populations, when the entire stratified population is considered, there is a
significant positive genetic correlation between spouses, denoted by Wright's
coefficient of inbreeding E

There is increased genetic covariance between relatives in the presence of population
stratification.
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Some considerations when building GRM

When QTLs are in strong LD, using the unweighted genomic relationship matrix in
G-BLUP can cause upward bias in the heritability estimation (Speed et al. 2012;
Fernando et al. 2017; Legarra 2016)

Varying degree of LD between SNPs and QTLs in each may lead to biased heritability
estimate (Yang et al. 2015; Gusev et al. 2013; Yang et al. 2017)
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Practical session:
Building GRM in R




Overview

SNPready R package
G.matrix — Four types of GRM

VanRaden (2008) :
Yang (2010)
Yang’s modified

Gaussian kernel
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Van Raden

/
c XX

- trace(XX')/n

is the centered marker matrix. For any marker locus ¢, x; = m; — 2p; where m; 1s the vector of
SNP genotypes coded as allele couting (0. 1 and 2).

G _vanRaden <- G.matrix (X alleles, method="VanRaden", plot = TRUE)

X alleles don’t need to be centered
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Yang

(‘rl_] Zpl)('rz
&3, e 2 oL

GUAR . Jk O ZAZJ" an { 14 _Z 1' (1+~P:)IIJ+2pi ] .
N ‘—’ R

2p; (1—pi)

G Yang <- G.matrix (X alleles, method="UAR", plot = TRUE)

X alleles don’t need to be centered
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Yang - modified

c+1/N
—_ 1 A
var(Ax)

where ¢ is a constant dependent on MAF of causal
variants. Here, we assume ¢ = 0 for causal loci and SNPs
on the same spectrum of allele frequency.

G Yang <- G.matrix (X alleles, method="UARadj", plot = TRUE)

X alleles don’t need to be centered
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Gaussian kernel

exp(—d2,

1

)
quantile(d?,0.5)

I\/’(l"i’ i ) =

G _Gaussian <- G.matrix (X alleles, method="GK", plot = TRUE)

X alleles don’t need to be centered

enome-wide predicti@én



