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Genome-wide Prediction in Human Genetics
Prediction of disease risk is an essential part of preventative medicine, often guiding clinical 
management

Improving effective medical treatment and preventative interventions needs to know how 
modifiable social, behavioural and physiological factors influence risk of disease  (Abraham 
et al., 2016), as well as the non-modifiable factors:

● Non-genetic risk factors: age, sex, family history of disease, lifestyle factors (smoking 
status, alcohol consumption … ), comorbidities (e.g., diabetes)

● Genetic risk factors: the genetic basis for many human traits and diseases has been 
established as polygenic (contributions of many genes each of them contributing very 
little to the trait), in contrast to Mendelian diseases (caused by variation in one or few 
genes with large effect)





Linkage

analyses

GWAS



GWAS in Human Genetics
● Genome-wide association studies (GWAS) have identified many SNPs-trait 

associations
● GWAS catalog (https://www.ebi.ac.uk/gwas/home) contains a high-quality 

collection of all published (and since 2020 also unpublished) GWAS studies
● As of 2025-01-30, the GWAS Catalog contains 7139 publications, 782879 top 

associations and 102188 full summary statistics
● GWAS Catalog data is currently mapped to Genome Assembly GRCh38.p14 and 

dbSNP Build 156
● GWAS data are often made available only as summary statistics (Estimated Beta, 

p-value).
● GWAS Catalog

https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/docs/diagram-downloads


GWAS in Human Genetics
GWAS_Catalog_slideshow (1).mp4

http://drive.google.com/file/d/1C4S03jnZXh6RCsn0cH9bKH29aMS0ViRD/view


GWAS in Human Genetics
These GWAS SNP-trait associations have provided:
● insights into the genes and pathways that cause disease
● more recently the use of these data for disease risk prediction

Fundamentals:
● Comparison of the frequency of alleles, genotypes or haplotypes in candidate genes or 

anonymous genome regions between unrelated affected and unaffected individuals
● The alleles analyzed may be thought to contribute to the disease or be in linkage 

disequilibrium with any such causative variation
● It can provide sufficient power to distinguish slight variations in disease risks, being more 

sensitive than linkage methods when the genes of interest contribute to disease susceptibility 
but are neither necessary nor sufficient to cause disease 



Uffelmann et al, 2021



Polygenic risk scores
Polygenic risk scores (PRS) (also referred as genomic risk scores) is a method to predict an 
individual’s genetic predisposition for a given disease 

It is a single value estimate of an individual’s genetic liability to a phenotype

Simplest form:

The genotypes are typically those of common (minor allele frequency > 0.01) biallelic SNPs 

Estimated SNP effect (obtained 
from GWAS summary statistics)

Genotype for the i individual for the j SNP 
(allelic dosage of the minor or effect allele)



Polygenic risk scores
PRS can be constructed from genome-wide significant SNPs (p < 5x10-8):

Weakly predictive PRS when the set of GWAS hits is small

PRS with larger number of SNPs (e.g., (p < 5x10-5)):

Small # of SNPs with a more precise effect estimates

Large # of SNPs with increasingly 
less precise effect estimates



Polygenic risk scores
Optimization of PRS:

Important: No overlap between training and testing datasets

TESTING DATASET (INDEPENDENT)

(a.k.a. TARGET SAMPLE)

PRS

Accounting for LD:
LD pruning (remove one SNP from a pair in high LD)
LD cumpling (LD pruning + most significant SNPs)

TRAINING DATASET (a.k.a. 

DISCOVERY SAMPLE)

Phenotype ~ individual SNP genotypes  



PRS analysis process (https://choishingwan.github.io/PRS-Tutorial/base/)

Most powerful GWAS results available on the phenotype 

Choi et al, 2020

● Important to check the effect allele:
○ Contact authors if not clear from the summary data
○ Ambiguous alleles (A/T, C/G): check MAF or discard 

them
○ Mismatching alleles: remove non-resolvable matching 

SNPs

● Target data with effective samples with >100 indiv
● Check if corrupted files
● Base and target data SNPs assigned to the same genome 

build
● Base and target data SNPs with good quality:

○ MAF, genotyping rate, HWE, heterozygosity, info



PRS analysis process (https://choishingwan.github.io/PRS-Tutorial/base/)

To calculate PRSs for all individuals in the base sample

Key factors in the development of methods for calculating PRSs:

1. Accounting for LD (if single SNP analysis was used):
a. clumping (prioritization of SNPs in the locus based on their p-value)
b. Inclusion of all SNPs accounting for LD among them

2. Potential adjustment of GWAS estimated effect sizes:
a. shrinkage of the effect estimates of all SNPs via standard or tailored 

statistical techniques
b. use of P value selection thresholds as inclusion criteria for SNPs into 

the score (Variable selection)

3. Tailoring of PRSs to target populations:
a. standardization of the units
b. Standardization (same scale)
c. Transformation of the phenotype should be taken into account



https://doi.org/10.1038/s41596-020-0353-1

http://zzz.bwh. harvard.edu/plink

https://www.cog‐genomics.org/ plink/1.9/ 

● QC steps consist of filtering out of SNPs and 
individuals:

(1) individual and SNP missingness

(2) inconsistencies in assigned and genetic sex of subjects

(3) minor allele frequency (MAF)

(4) deviations from Hardy–Weinberg equilibrium (HWE)

(5) heterozygosity rate

(6) relatedness

(7) ethnic outliers (see population stratification).



Accuracy of PRS
● Disease heritability (h2

SNP > 0.05) :
○ Software to estimate h2

SNP from GWAS sum stat:
■ LD score regression (Bullik-Sullivan, 2015)
■ SumHer (Speed and Balding, 2019)

Lambert et al, 2019



Accuracy of PRS
● Disease heritability
● Genetic architecture:

○ Rare genetic causes are more 
prevalent among patients with a 
low PRS

○ These patients may be prioritized 
for deep-depth sequencing of 
relevant genes

Lu et al, 2020



Accuracy of PRS
● Disease heritability and genetic architecture
● cor(PRS,PRS_estimated). It depends on:

○ Method used to construct the PRS
○ Sample size

● Update of PRSs:
○ GWASs expand in size
○ additional risk loci are identified
○ Alternative methods for  score calculation

● Imputation variability in underrepresented populations  → health disparities
● Different genetic background (one-third as informative for African ancestry individuals 

(Duncan et al, 2020)



Accuracy of PRS
Accuracy of PRSs, with variants and weights from a European GWAS, decreases linearly with increasing proportion of 

African ancestry

Cavazos and Witte, 2021



Polygenic Risk Scores - Limitations
● Individualized PRS should be updated over time → Fluctuations in individual-

level scores  → may affect the application of PRSs in practice which relates to 
prioritization of preventative behaviors

● Sparse genotyping approaches (SNP arrays or low-pass WGS) → Need of 
imputing  → Variability introduction at the individual level



Polygenic Risk Scores - Limitations
● Findings regarding genetic liability from resources such as UKBiobank or GWAS 

results may not be generalizable to individuals who are not of European descent:

○ Differences in variant frequencies 

○ LD patterns artifactual differences due to uncorrected population stratification (Berg 
et al, 2019)



Polygenic Risk Scores - Limitations

Duncan et al, 2020

Ancestry representation in the first decade of polygenic scoring studies (2008–2017; N = 733 studies)



Polygenic Risk Scores - Limitations
IMPUTATION:

● Pre-phasing step introduces the

bulk of the stochasticity in

imputation and PRS results

● SHAPEIT+Minimac leads to the

most intra-individual variability,

followed by Beagle and

Eagle+Minimac

● This algorithm-level variability is

observed regardless of the

original approach used to derive

the PRS and the number of SNPs

included in the score

Chen  et al, 2020



Polygenic Risk Scores - Limitations
● Variability of the PRS percentile is greatest in the middle of the distribution and lowest at the tails

(Chen et al, 2020)

Solution: deterministic imputation processes should be favored or stochastic imputation processes

could be run multiple times in order to select the most common result

● Both the clumping and thresholding steps are arbitrary, and reporting the results from the P-value

threshold that maximizes out-of-sample prediction in a single cohort is a form of Winner’s curse

(Wray et al, 2019)

● GWAS one-SNP-at-a-time regression may not the optimal way to estimate SNP effects for use in

prediction (Wray et al, 2007):

○ Methods that fit all SNPs simultaneously usually generate more accurate out-of sample

prediction than those fitting one SNP at a time

Chen  et al, 2020



Polygenic Risk Scores - Other considerations
● Having relatives in the discovery sample will improve the prediction for an individual (Lee et al,

2017):

○ However, having first/second degree relatives may inflate the association between PRS and

phenotype (target sample) → removal of those ind (Choi et al., 2020)

● Include Family History as predictor, because it captures genetic and not genetic factors not

captured by PRS (Inouye et al, 2018)

○ PRS is an estimate of the aggregate genetic value of an individual, tracking only the genetic

contribution to the trait tagged by common DNA polymorphisms.

○ Family history reflects the phenotypes of relatives of the individual.



Polygenic Risk Scores - Other considerations

Choi et al, 2020

Major sources of inflation/deflation of PRS-trait associations



Polygenic Risk Scores - Examples

Khera et al, 2018



Koutros*, …, López de Maturana* et al, 2023



Polygenic Risk Scores - Examples

Lennon et al, 2024 



Polygenic Risk Scores - Resources
An open database of polygenic scores and the relevant metadata

● PGS Catalog - The Polygenic Score Catalog

● https://pgsc-calc.readthedocs.io/en/latest/

http://www.pgscatalog.org/
https://pgsc-calc.readthedocs.io/en/latest/


Polygenic Risk Scores - Resources
Polygenic Risk Score software for calculating, applying, evaluating and plotting the results of polygenic

risk scores (PRS) analyses (https://choishingwan.github.io/PRS-Tutorial/cal_prs/ )

● Different methods (PLINK, PRSice-2, LDPred-2 and lassosum) with tutorials

● It handles both genotyped and imputed data

● it provides empirical association P-values free from inflation due to overfitting

● It supports different inheritance models

● it can evaluate multiple continuous and binary target traits simultaneously



PRS applications
PRS likely to be used in the near future due to:

● data sharing restrictions to individual-level data; 
● heterogeneity across cohorts
● the largest sources of individual-level data—population cohorts, such as the UK 

Biobank—generally have relatively few individuals with specific diseases 
compared to dedicated case/control studies, for which there is typically only 
summary statistic data







PRSs have been shown to have some potential in disease risk identification, drug 
targeting and stratified medicine across a range of therapeutic areas including 
oncology, cardiovascular and psychiatry

The future of polygenic risk scores looks cautiously optimistic

PRS implications



Nature, vol 637, pages 637–647 (2025)



Nature 637, 554-556 (2025)

Nature 637, 252 (2025)

https://genomestake.substack.com/p/genome-editing-and-eugenics



• Visscher et al (2025) describe a mathematical model that estimates that handful

editings can lead to a dramatic reduced risk of various disorders:

• Assumptions: theoretical scenario where large-scale genome editing is feasible and

safe

• Selection of embryos based on PRSs is already a possibility offered by fertility

clinics in USA since 2019 → polygenic editing goes even beyond:

• Successful for rare conditions but in somatic tissue and not in reproductive cells

or embryos (heritable)

• Heritable editing may lead to off-target effects and unpredictable negative

consequences

Nature 637, 554-556 (2025)

Time to discuss on the polygenic editing of embryos



• Main claim is that disease risk can be reduced by introducing into the genomes of

embryos ‘rare protective alleles’ — genetic variants that are uncommon in the

population but are thought to protect against disease

• This is, in fact, the strategy taken by He Jiankui in his attempts to grant embryos

some protection against HIV

Nature 637, 554-556 (2025)

Time to discuss on the polygenic editing of embryos



• The model proposes that editing only ten rare protective alleles per disease is

expected to lead to dramatic reductions in risk, between 2-fold and 60-fold, but…

• Mathematical models are only as good as the assumptions they are based on,

and this model depends on:

1. Genome-editing techniques will be able to modify DNA with perfect

accuracy:

• This is not the case, yet

2. The success of the proposed approach relies on accurate identification of

genetic variants that have a causal effect:

• GWAS studies do not necessarily identify causal variants, but common

variants in LD with the causal ones

Time to discuss on the polygenic editing of embryos

Nature 637, 554-556 (2025)

Time to discuss on the polygenic editing of embryos



3. Visscher et al. assume that the protective effects of different variants are

independent and will add up

• This is a common assumption made at population level

• If two protective variants belong to the same pathway→ can we assume

that their effects sum up?

4. GxE: are the variants protective for a given trait in an environment also

protective in every environment/exposure?

• What if in the future an exposure disappears? Introducing a protective

variant in an environment that no longer exists may not be useful

Nature 637, 554-556 (2025)

Time to discuss on the polygenic editing of embryos



5. the model assumes that the degree of risk reduction would be the same

across the relevant population, but the genetic reasons may be different

• Some embryos might already be at low risk of disease because they are

carrying target protective alleles

• Others might be at low or high risk because of their burden of common

variants.

Nature 637, 554-556 (2025)

Time to discuss on the polygenic editing of embryos



• Other issues:

• safety is far from guaranteed

• risks to children must be taken especially seriously:

• Unexpected outcomes

• early use of genetic testing of embryos to screen for chromosomal

abnormalities before implantation inadvertently worsened IVF outcomes (Yan

et al, 2021)

• Unlike somatic editing, any errors will affect every cell and organ in the future

child:

• misidentified causal alleles

• Pleiotropy

• Rare alleles may be rare for a reason

• Unpredictable interactions arising from new combinations of variants

Nature 637, 554-556 (2025)

Time to discuss on the polygenic editing of embryos



• Ethical issues:

• The authors calculate that this technology will be so low risk and effective in

every individual that deploying it on a large scale might be justified, even for

individuals with low absolute risk of disease ¿?

• Eugenics: unedited genomes are intrinsically worth less than edited ones, it

creates hierarchies of worth ¿?

https://genomestake.substack.com/p/genome-editing-and-eugenics

Time to discuss on the polygenic editing of embryos



Genome-wide Prediction in Animal and Plant breeding
Quantitative genetics is a cornerstone of both plant and animal breeding for the last 
century

Genomic selection has led to the re-emergence of quantitative genetics as a framework 
for incorporating marker and sequence information to supplement and complement 
standard phenotypic descriptors and pedigree information (Hickey et al 2017) 

Access to large-scale sequence and phenotypic information would provide 
opportunities to unify breeding methods and tools across several plant and animal 
species → Modernization of breeding programs (Hickey et al 2017) 



1725 –1795 Methodical selection, 

inbreeding and culling (Bakewell) 

(Hickey et al 2017)



Differences in plant and animal breeding
Although there are conceptual similarities between animal and plant breeding, breeding 
methods have diverged:

- Species specific characteristics: reproduction mode, # of progeny per cycle ...
- Plants: breeding since domestication; consisted mainly in selection (need for 

hybridization recognized in the last 250 years (Kingsbury, 2009))
- Animals: a more structured approach adopted earlier than in plants (Bakewell, 18 

century → herdbooks)

Although both plant and animal breeders deal with complex traits, individual mutations 
with moderate to large effects have been exploited more importantly in plant breeding than 
in animal breeding (Hickey et al, 2017)



Differences in plant and animal breeding
Other differences:

● Plant breeders used well-designed trials to measure phenotype to inform their 
selection, and animal breeders use complex statistical methods to estimate 
breeding value

● Animal breeders use information from the relatives of selection candidates (milk 
yield in bulls), with low heritability or measured late in the breeding process 
(longevity); Plant breeders don’t have the problem of ‘sex-limited’ traits and could 
increase the accuracy growing more plants from the same cultivar



Genomic selection in plant and animal species
GS was adopted rapidly in the more technologically developed livestock sectors (dairy 
cattle)

Major international seed companies are routinely using genomic selection

Many public-sector breeding programs are exploring this technology

Bottleneck:

● Computational and recording infrastructure
● Genotypic and phenotypic data to implement GS
● Complexity of genomes of many plant species



Comparison of plant (inbreeding cereal) and animal breeding approaches

Hickey et al, 2017



Joining efforts between animal and plant breeders
Plant and animal breeders will benefit from working together to address problems that 
are common to the two disciplines, such as prediction of traits in structured 
populations (Schön and Simianer, 2015)



Examples of GS in animal and plant breeding



Groen Kennisnet (2017), Textbook animal breeding and genetics





Voss-Fels et al, 2019 (https://doi.org/10.1007/s00122-018-3270-8)



Accuracy of Genomic predictions
● Quality of phenotypes in the 

training population
● Size of reference population
● Reference population must be 

updated (Poldich et al, 2004)
● Training and testing should be 

closely related

Daetwyler et al, 2008

Hayes et al, 2009b

Groen Kennisnet (2017), Textbook animal breeding and genetics



Similarities and differences in performance of PRS and GS 
Both PRS and GEBV are estimates of the additive genetic value of a trait of an 
individual (Wray et al, 2019)

Higher proportion of genetic variance explained by SNPs in livestock than in humans 
is due to the greater LD in livestock

SNP-based heritability estimates in humans are lower than those in animal, due to 
differences in recent effective sample size:

● In animals, common SNPs tag causal variants at much greater physical distance, 
compared to in humans, and including across chromosomes



Similarities and differences in performance of PRS and GS 
* Different in purpose:

● PRS: predict the future phenotype of an individual (efficacy depends on the SNP 
h2)

● GEBV: predict the average value of an animal’s genetic material to its offspring

The use of summary statistic data for the genotype effect size estimates distinguishes 
PRS from phenotypic prediction approaches that exploit individual-level data only

In the latter, genotype effect sizes are usually estimated in joint models of multiple 
variants and prediction performed simultaneously, using approaches such as best 
linear unbiased prediction or  (LASSO)



Similarities and differences in performance of PRS and GS 
* Effect sizes estimation:

● PRS: usually, one SNPs at a time
● GEBV: all SNPS jointly fitted
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