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Preventive strategies against disease
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Genome-wide Prediction in Human Genetics

Prediction of disease risk is an essential part of preventative medicine, often guiding clinical

management

Improving effective medical treatment and preventative interventions needs to know how
modifiable social, behavioural and physiological factors influence risk of disease (Abraham
et al.,, 2016), as well as the non-modifiable factors:

e Non-genetic risk factors: age, sex, family history of disease, lifestyle factors (smoking

status, alcohol consumption ... ), comorbidities (e.g., diabetes)

e Genetic risk factors: the genetic basis for many human traits and diseases has been
established as polygenic (contributions of many genes each of them contributing very
little to the trait), in contrast to Mendelian diseases (caused by variation in one or few
oenes with large effect)
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Figure 1| Feasibility of identifying genetic variants by risk allele frequency
and strength of genetic effect (odds ratio). Most emphasis and interest lies
in identifying associations with characteristics shown within diagonal dotted
lines. Adapted from ref. 42.
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GWAS in Human Genetics

e Genome-wide association studies (GWAS) have identified many SNPs-trait
associations

o GWAS catalog (https://www.ebi.ac.uk/gwas/home) contains a high-quality
collection of all published (and since 2020 also unpublished) GWAS studies

e Asof 2025-01-30, the GWAS Catalog contains 7139 publications, 782879 top
associations and 102188 full summary statistics

e GWAS Catalog data is currently mapped to Genome Assembly GRCh38.pl4 and

dbSNP Build 156
e GWAS data are often made available only as summary statistics (Estimated Beta,

p-value).
e GWAS Catalog
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http://drive.google.com/file/d/1C4S03jnZXh6RCsn0cH9bKH29aMS0ViRD/view

GWAS in Human Genetics

These GWAS SNP-trait associations have provided:
® insights into the genes and pathways that cause disease
® more recently the use of these data for disease risk prediction

Fundamentals:

® Comparison of the frequency of alleles, genotypes or haplotypes in candidate genes or
anonymous genome regions between unrelated affected and unaffected individuals

® The alleles analyzed may be thought to contribute to the disease or be in linkage
disequilibrium with any such causative variation

® [t can provide sufficient power to distinguish slight variations in disease risks, being more
sensitive than linkage methods when the genes of interest contribute to disease susceptibility
but are neither necessary nor sufficient to cause disease

G enome-wide predicti@én
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Polygenic risk scores

Polygenic risk scores (PRS) (also referred as genomic risk scores) is a method to predict an
individual’s genetic predisposition for a given disease

It is a single value estimate of an individual’s genetic liability to a phenotype

Genotype for the 7/individual for the j SNP

: allelic dosage of the minor or effect allele
Simplest form: ( & )

Estimated SNP effect (obtained
from GWAS summary statistics)

The genotypes are typically those of common (minor allele frequency > 0.01) biallelic SNPs

enome-wide predicti@n



Polygenic risk scores

PRS can be constructed from genome-wide significant SNPs (p < 5x108):
Weakly predictive PRS when the set of GWAS hits is small

PRS with larger number of SNPs (e.g., (p < 5x107)):

Small # of SNPs with a more precise effect estimates

Large # of SNPs with increasingly
less precise effect estimates N—

PG enome-wide predictién



Polygenic risk scores

Optimization of PRS:

TRAINING DATASET (a.k.a. TESTING DATASET (INDEPENDENT)

DISCOVERY SAMPLE) (a.k.a. TARGET SAMPLE)

Phenotype ~ individual SNP genotypes

Accounting for LD:
LD pruning (remove one SNP from a pair in high LD)
LD cumpling (LD pruning + most significant SNPs)

Important: No overlap between training and testing datasets

enome-wide predicti@én



doifin  LEILT ] Jpetop Independent
el ikl ik samples
Target data

phenotype data

Betas/ORs weights in PRS

P R S a n a Iys I S p rO c e SS (https://chnishingwan.github.io/PRS-TutoriaI/baie/) Al Summ:r;ii;:t;s I I e

Most powerful GWAS results available on the phenotype calcuation - Often small sample size
- .
. ¥ Both data sets QCed as standard in GWAS
® ImpOrtant to CheCk the effeCt auele' SomeQGrqquirasspacial care in PRS (e.g., sample overlap, relatedness
o Contact authors if not clear from the summary data _‘ A P et overap betwean base and target data
o Ambiguous alleles (A/T, C/G): check MAF or discard —
them LD adjustment Beta shrinkage P value thresholding
o Mismatching alleles: remove non-resolvable matching if |
SNEs : AR T
e Target data with effective samples with >100 indiv _+ eg.cumpng )\ + eg. LASSO/idge) \ « PRSat multle P
e Check if corrupted files . ———
: i
e Base and target data SNPs assigned to the same genome Perform sssociation testing
bLllld 2 Out-of-sample PRS testing
. . 2 * K-fold cross-validation
e Base and target data SNPs with good quality: g + Tostin data separate from basafarget
o MATF, genotyping rate, HWE, heterozygosity, info .
genotyping ygosity Choi et al, 2020
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PRS analysis process wu s oo

To calculate PRSs for all individuals in the base sample
Key factors in the development of methods for calculating PRSs:

1. Accounting for LD (if single SNP analysis was used):
a.  clumping (prioritization of SNPs in the locus based on their p-value)
b.  Inclusion of all SNPs accounting for LD among them

2. Potential adjustment of GWAS estimated effect sizes:
a.  shrinkage of the effect estimates of all SNPs via standard or tailored

statistical techniques
b. use of P value selection thresholds as inclusion criteria for SNPs into

the score (Variable selection)

3. Tailoring of PRSs to target populations:

a. standardization of the units
b. Standardization (same scale)
c. Transformation of the phenotype should be taken into account

PRS calculation

Validate

* Summary statistics

s e.g., clumping
.

e
Independent
samples

Base data Target data

phenotype data
+ Often small sample size

Betas/ORs weights in PRS

+ Individual-level genotype and
calculation

Qc

Both data sets QCed as standard in GWAS

Some QC requires special care in PRS (e.g., sample overlap, relatedness
and population structure)

Retain set of SNPs that overlap between base and target data

ws-

Beta shrinkage P value thresholding

LD adjustment
* *

g

« e.g., LASSO/ridge / \ « PRS at multiple P

Generate PRS
+
Perform association testing

Out-of-sample PRS testing

* K-fold cross-validation
+ Test in data separate from base/target

i Senome-wide
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Standard GWAS QC should be
performed (see ref. 29).

e QC steps consist of filtering out of SNPs and

Verify which is the effect allele.

individuals:

(1) individual and SNP missingness

Consider running multi-trait GWAS
analysis (e.g., GenomicSEM or MTAG)

1 GEneraE more pawerl bese cata (2) inconsistencies in assigned and genetic sex of subjects

(3) minor allele frequency (MAF)

Target N> 100.
Perform standard GWAS QC

(see rt. 29 (4) deviations from Hardy—Weinberg equilibrium (HWE)

Remove ambiguous and
duplicate SNPs.

Consider removing mismatches (5 ) heteIOZYgOSity rate

of sex and the sex chromosomes.

Avoid sample overlap and (6) relatedness

relatedness between base and
target.

(7) ethnic outliers (see population stratification).

.
"Do you have ™
multiple base ™

: "”m““’ s http://zzz.bwh. harvard.edu/plink
https://www.cog-genomics.org/ plink/1.9/

" PRSice: standard C+T approach :
L Dpred: Bayesian shrinkage
) model f
MultiP8Ss: PLINK: all-purpose

Method e arassionwith || ool or geneti https://doi.org/10.1038/s41596-020-0353-1

continuow: e analeoe:
g analyses
ﬁfglape;l f',jrr, JAMPred: Two-step bayesian ) 10l
S analysis in modeling bigsnpr: R package




Accuracy of PRS
hZ-01 b h2-05
e Disease heritability (h?gp> 0.05) : AUC -069, OR ygeu =2 AUC =09, OR 0, - 74
o Software to estimate h?gp from GWAS sum stat:
m LD score regression (Bullik-Sullivan, 2015)
m SumHer (Speed and Balding, 2019) | 2 2 0 2

Standardised PRS

in bin (95% CI)
oo o o0
—_ 8] (%) iy
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.
.
.
se® -
........
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Probability of disease

- r  rr T T
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Percentile of BB

Lambert et al, 2019
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Accuracy of PRS

e Disease heritability

e Genetic architecture: Z onprsts p
o Rare genetic causes are more & m o s i ‘ot & e
prevalent among patients with a _ .
low PRS o = CO:"““W

disease-free individuals

o These patients may be prioritized
for deep-depth sequencing of
relevant genes

Predicted prevalence of rare pathogenic varants

Polygenic rigk score

Ly et al. 2020
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Accuracy of PRS

e Disease heritability and genetic architecture

e cor(PRS,PRS_estimated). It depends on:
o  Method used to construct the PRS
o  Sample size

e Update of PRSs:

o GWASs expand in size
o additional risk loci are identified
o  Alternative methods for score calculation

e Imputation variability in underrepresented populations — health disparities
e Different genetic background (one-third as informative for African ancestry individuals
(Duncan et al, 2020)

enome-wide predicti@n



Accuracy of PRS

Accuracy of PRSs, with variants and weights from a European GWAS, decreases linearly with increasing proportion of

African ancestry

$r)

<
&
lé

oouracy |

CEU > 80% 80%>CEU>20% CEU<20% African-onh
Cavazos and Witte, 2021

PG enome-wide predicti@én



Polygenic Risk Scores - Limitations

Individualized PRS should be updated over time — Fluctuations in individual-
level scores — may affect the application of PRSs in practice which relates to
prioritization of preventative behaviors

Sparse genotyping approaches (SNP arrays or low-pass WGS) — Need of
imputing — Variability introduction at the individual level

enome-wide predicti@n



Polygenic Risk Scores - Limitations

e Findings regarding genetic liability from resources such as UKBiobank or GWAS
results may not be generalizable to individuals who are not of European descent:

o Differences in variant frequencies

o LD patterns artifactual differences due to uncorrected population stratification (Berg
et al, 2019)

enome-wide predicti@n



Polygenic Risk Scores - Limitations

Ancestry representation in the first decade of polygenic scoring studies (2008-2017; N = 733 studies)

I Middle eastern (4 siudies)

Latino & native american (9 studies)
African ancesiry (15 studies)
Combined (140 studies)

Asian (140 studies)
European ancestry (459 studies)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

c Representation of each group

Proportion
by year

o

M European: 460%
M Asian: 40%
M Latino: 19%
O African: 17%

M Middle eastem: 10% Duncan et al 2020
‘ s

[ Oceanic: 0%

World population Polygenic scoring
estimates studies
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Polygenic Risk Scores - Limitations
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Polygenic Risk Scores - Limitations

e Variability of the PRS percentile is greatest in the middle of the distribution and lowest at the tails
(Chen et al, 2020)
Solution: deterministic imputation processes should be favored or stochastic imputation processes
could be run multiple times in order to select the most common result

e Both the clumping and thresholding steps are arbitrary, and reporting the results from the P-value
threshold that maximizes out-of-sample prediction in a single cohort is a form of Winner's curse
(Wray et al, 2019)

e GWAS one-SNP-at-a-time regression may not the optimal way to estimate SNP effects for use in
prediction (Wray et al, 2007):
o Methods that fit all SNPs simultaneously usually generate more accurate out-of sample
prediction than those fitting one SNP at a time

Chen et al, 2020
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Polygenic Risk Scores - Other considerations

e Having relatives in the discovery sample will improve the prediction for an individual (Lee et al,
2017):

o However, having first/second degree relatives may inflate the association between PRS and
phenotype (target sample) — removal of those ind (Choi et al., 2020)

e Include Family History as predictor, because it captures genetic and not genetic factors not
captured by PRS (Inouye et al, 2018)

o PRS is an estimate of the aggregate genetic value of an individual, tracking only the genetic
contribution to the trait tagged by common DNA polymorphisms.

o Family history reflects the phenotypes of relatives of the individual.

enome-wide predicti@n



Polygenic Risk Scores - Other considerations

Major sources of inflation/deflation of PRS-trait associations

Parents typically create

ciation

of local environmental risk
factors.

Differences in base
and target data can
deflate PRS prediction.

Inflation of PRS-trait asso

Proximity of genetics and/or environment

Choi et al, 2020
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Polygenic Risk Scores - Examples

Odds ratio versus
remainder of population

> threefold (8.0%)
= fourfold (2.3%)

= fivefold (0.5%)

Palygenic score percentile
Prevalence of CAD (%)

I I I I I I I I I I I I I I I I I
—4 =2 0 2 4 Control 0 10 20 30 40 50 60 70 80 90 100

Genome-wide polygenic score for CAD CAD Percentile of polygenic score

Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPS.,; in the UK Biobank testing dataset (n=288,978). The x axis represents GPS.,,, with values
scaled to a mean of 0 and a standard deviation of 1to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping
array, and the first four principal components of ancestry. b, GPS,; percentile among CAD cases versus controls in the UK Biobank testing dataset.

Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect

the maximum and minimum values within each grouping. ¢, Prevalence of CAD according to 100 groups of the testing dataset binned according to the

percentile of the GPSp. Khera et al, 2018

PG enome-wide predictién



Absolute risk, % Absolute risk, % Population of 50-yr-old individuals Males Females

Never smoker Former smoker Current smoker Never smoker Former smoker Current smoker R .
Average risk, 95% CI__ Average risk, 95% CI_ Average risk, $8% CI Average risk, 95% CI_ Average risk, 95% CI _ Average risk, 95% CI esxc_lent population 1990 382 2045713
9 (18,20) 10 (37.44) 71 (66,77 Overat 04 (04.05) T (09, 13) 20 (17.23) (census estimate, July 1, 2017), n
09 (08.10) 19 (1L.7.21) 24 PRS, dedlle 1 02 (02.02) 05 (04,06) 09 (08,11)
12 (11,13) 25 23,27 45 PRS, decile 2 03 (02.03) 07 (06,08) 12 (11,14
14 (13,15 29 (26,32 52 PRS, dedlle 3 03 (03.03) 08 (06.09) 14 (12.16) i i
A B oy T Non-Hispanic Whites 657
36 (33.39) 64 3 04 10 (08.12) 18 (15, o 9 :
3 Brin " e ; 1 : b v bt (National Health Interview Survey 2015-2017), %
44 (40.47) 78 05 5 12 14) 22 (
3 49 (45.63) 87 . 0s 5, 13 ( 16) 24 x .
RS, declle 9 5 56 (52.61) 10 (92,108) ; 06 15 18) 28 ¢ Resident population:
PRS, decile 10 74 13 (120, 141) (1] 20 25) 37 (3 . + o
83 (75 146 (134, 158) o 09 23 (19.28) 42 non-Hispanic Whites, n
(46.54) 103 (94,114 18.0 (164, 19.8) L (1.0,1.3) 29 (45.60) 53 (45.60)

62.4

1307 681 1276 525

Never smokers, n (%) 623764 (47.7) 741661 (58.3)
Average risk, % 1.9 04
Number of cases 11852 2,967

Former smokers, n (%) 396 227 (30.3) 270623 (21.2)
Average risk, % 4.0 11
Number of cases 15849 2977

Current smokers, n (%) 287 690 (22.0) 264241 (20.7)
Average risk, % 71 20

Number of cases 20426 5,285

Absolute risk (%)
Absolute risk (%)

If all current smokers quit smoking If all current smokers had never started smoking

5 3 H 7

4 5
PRS deciles PRS deciles

I Neversmokers W Former smoke B cunent smokers

Number of cases prevented
Number of cases prevented

5 6 10 5 6 7
PRS deciles PRS deciles
— Males —li- Females

T

[ 7 T 8T 9 T 10 [[ecite T 2| | 3 7 | s [ 10
1| o7 | 1003 | 1266 | 1611 | [Males 9 | 950 352 1640 | 1841 | 2100 | 2733
Femal

Koutros?, ..., Lopez de Maturana* et al, 2023
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Polygenic Risk Scores - Examples

¥ Asian = Asthma Asthma

M Hispanic/Latino AFIB
African/African American BC
B European ancestry ©
» CKD CKD

+ CHD CHD
HC
» Obesity Obesity
PC
«T2D T2D

High-PRS 10° 3 17 75

threshold Odds ratio Number of SNPs Age ranges for return
Fig.2|Summary of the ten conditions that were implemented. ‘High-PRS Table 2. Note that the odds ratio for obesity is not reported here, as it willbe
threshold represents the percentile that is deemed to be the cutoff for a published by the Genetic Investigation of ANthropometric Traits consortium
specific condition above which a high-PRS result is reported for that condition.  (Smitetal., manuscriptin preparation). ‘Number of SNPs’ represents the range
Odds ratios are reported as the mean odds ratios (square dot) associated with of numbers or sites included in each score. ‘Age ranges for return’ indicates the
having a score above the specified threshold, compared to having ascore participant ages at which a PRS is calculated for a given condition. AFIB, atrial
below the specified threshold, along with 95% confidence intervals (Cls), fibrillation; BC, breast cancer; CKD, chronic kidney disease; CHD, coronary
shown in the whiskers. The number of case and control samples used to derive heart disease; HC, hypercholesterolemia; PC, prostate cancer; T1D, type 1
these odds ratios and Cls for each condition can be found in Supplementary diabetes; T2D, type 2 diabetes.

Lennon et al, 2024
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Polygenic Risk Scores - Resources

An open database of polygenic scores and the relevant metadata

e PGS Catalog - The Polygenic Score Catalog BAR PGS Catalog | some | srowse- | oownesss- | ocumenon-
B = by Irait Category @

e https://pgsc-calc.readthedocs.io/en/latest/ \:" ~‘
|
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Polygenic Risk Scores - Resources

Polygenic Risk Score software for calculating, applying, evaluating and plotting the results of polygenic
risk scores (PRS) analyses (https://choishingwan.github.io/PRS-Tutorial/cal_prs/)

Different methods (PLINK, PRSice-2, LDPred-2 and lassosum) with tutorials
It handles both genotyped and imputed data

it provides empirical association P-values free from inflation due to overfitting
It supports different inheritance models

it can evaluate multiple continuous and binary target traits simultaneously

PG enome-wide predictién



PRS applications

PRS likely to be used in the near future due to:

e data sharing restrictions to individual-level data;

e heterogeneity across cohorts

e the largest sources of individual-level data—population cohorts, such as the UK
Biobank—generally have relatively few individuals with specific diseases
compared to dedicated case/control studies, for which there is typically only
summary statistic data

enome-wide predicti@n



Genetics in Medicine (2023) 25, 100803

Genetics
Medicine

ELSEVIER www.journals.elsevier.co ctics-in-medicine

ACMG STATEMENT

The clinical application of polygenic risk scores:
A points to consider statement of the American

College of Medical Genetics and Genomics (ACMG)
Aya Abu—El—Haijal'E, Honey V. Reddi®, Hannah Wand®, Nancy C. Rose’, Mari Mori®’,

Emily Qian®, Michael F. Murray’; on behalf of the ACMG Professional Practice and
Guidelines Committee'**

Disclaimer: This statement is designed primarily as an educational resource for medical geneticists and other clinicians to help them provide quality
medical services. Adherence to this statement 15 completely voluntary and does not necessanly assure a successful medical outcome. This statement
should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to
obtaming the same results. In determining the propriety of any specific procedure or test, clhinicians should apply their own professional judgment to
the specific clinical circumstances presented by the individual patient or specimen.

Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement.
Clinicians also are advised to take notice of the date this statement was adopted, and to consider other medical and scientific information that becomes
available after that date. It also would be prudent to consider whether imtellectual property interests may restrict the performance of certain tests and
other procedures. Where individual authors are listed, the views expressed may not reflect those of authors” employers or affilisted institutions.
Requests for permissions must be directed to the Amencan College of Medical Genetics and Genomics, as rights holder.
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Table 1  Clinical application of polygenic risk score

Point number Points to consider

1 PRS test results do not provide a diagnosis,
instead they provide a statistical prediction
of increased clinical risk.

A low PRS does not rule out significant risk
for the disease or condition in guestion.

If the risk prediction of a PRS is derived from
a population that is different from the
patient being tested, then the results may
have a poor predictive value for the patient.

Isolated PRS testing is not the appropriate test
for clinical scenarios in which monogenic
etiology is known or suspected.

Before testing, a patient and provider should
discuss the indications for the PRS test,
and the patient should be informed how
the PRS results will be used to guide
medical management.

PRS-based medical management should be
evidence-based; however, there is currently
limited evidence to support the use of PRS
to quide medical management.

Clinical follow-up for PRS should be
consistent with best practices outlined by
professional societies with appropriate
expertise in instances when and where
evidence-based practice guidelines exist.

The ACMG's position is that preimplantation
PRS testing is not yet appropriate
for climical use and should not be
offered at this time.™

ACMG, American College of Medical Genetics and Genomics; PRS, poly-

genic risk score.
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PRS implications

PRSs have been shown to have some potential in disease risk identification, drug
targeting and stratified medicine across a range of therapeutic areas including

oncology, cardiovascular and psychiatry

The future of polygenic risk scores looks cautiously optimistic
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Analysis

Heritable polygenic editing: the next
frontieringenomic medicine?

https://doi.org/10.1038/s41586-024-08300-4  Peter M. Visscher"**, Christopher Gyngell**, Loic Yengo' & Julian Savulescu®%¢™

Received: 30 June 2022

Accepted: 29 October 2024 Polygenic genome editing in human embryos and germ cells is predicted to

Published online: 8 January 2025 becomeW Several recent books and academic

papers thsed by germline genome editing and

the opportunities that it may present' . To date, no attempts have been made to

M Check for updates pmg specific variants associated with polygenic
diseases. In this Analysis, we show that polygenic genome editing could theoretically
i i .For example, editing arelatively
small number of genomic variants could make a substantial difference to an
individual'srisk of developing coronary artery disease, Alzheimer’s disease, major
depressive disorder, diabetes and schizophreni inri
factors, such as low-density lipoprotein cholesterol and blood pressure, could, in
theory, be achleved by polygenicediting. Although heritable polygenic editing (HPE)

,we completed calculations to discuss the underlying ethical issues.

Our modelling demonstrates how the Eutatwelx Hosmve conseguences ofgene
editing at anindividual level may deepen health inequalities. Further, as single or
Wne Variants can ncrease tde l‘lSE oF some diseases while decreasing that of
others, HPE raises ethical challenges related to pleiotropy and genetic diversity. We

concluc{e By arguing Fora collectivist perspective on the ethical issues raised by HPE, Nature’ VOl 637’ pages 637_647 (2025 )

which accounts forits effects onindividuals, their families, communities and society*.

Open access
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Genome editing

Embryo editing for disease
is unsafe and unproven

Shai Carmi, Henry T. Greely & Kevin J. Mitchell

Mathematical modelling suggests that itis theoretically
possible to reduce risk of common diseases using heritable
genome editing. Scientists argue that the technology involves
considerable risk and uncertain benefits. See p.637

We need totalk
about human
genome editing

In afew decades, gene-editing technologies
could reduce the likelihood of common
human diseases. Societies must use this
time to prepare for their arrival.

i

Genome Editing and Eugenics

The one hundred and third Take:

. GREG GIBSON
JAN 16, 202

I've been pondering a reboot of Genome's Take for a while, but find myself kicked into
action by the appearance of a disturbing eugenic article on human genome editing,
“Heritable polygenic editing: the next frontier in genomic medicine?” this week
(January 8, 2025) in Nature. That this has met with barely a whimper on social media is
astonishing, so I feel the need to comment. I do so with a heavy heart, because nobody
likes to be completely at odds with good friends and collaborators. I am in awe of the

contributions of the two authors I know, Peter Visscher and Loic Yengo, and learn
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Time to discuss on the polygenic editing of embryos

» Visscher et al (2025) describe a mathematical model that estimates that handful

editings can lead to a dramatic reduced risk of various disorders:

« Assumptions: theoretical scenario where large-scale genome editing is feasible and
safe

« Selection of embryos based on PRSs is already a possibility offered by fertility
clinics in USA since 2019 - polygenic editing goes even beyond:
» Successful for rare conditions but in somatic tissue and not in reproductive cells

or embryos (heritable)

» Heritable editing may lead to off-target effects and unpredictable negative
consequences

Nature 637, 554-556 (2026@a 1 &
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Time to discuss on the polygenic editing of embryos

» Main claim is that disease risk can be reduced by introducing into the genomes of
embryos ‘rare protective alleles’ — genetic variants that are uncommon in the
population but are thought to protect against disease
» This is, in fact, the strategy taken by He Jiankui in his attempts to grant embryos

some protection against HIV
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Time to discuss on the polygenic editing of embryos

 The model proposes that editing only ten rare protective alleles per disease is
expected to lead to dramatic reductions in risk, between 2-fold and 60-fold, but...
« Mathematical models are only as good as the assumptions they are based on,
and this model depends on:
1. Genome-editing techniques will be able to modify DNA with perfect
accuracy:
* This is not the case, yet
2. The success of the proposed approach relies on accurate identification of
genetic variants that have a causal effect:

« GWAS studies do not necessarily identify causal variants, but common
variants in LD with the causal ones
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Time to discuss on the polygenic editing of embryos

3. Visscher et al. assume that the protective effects of different variants are
independent and will add up
* This is a common assumption made at population level
 If two protective variants belong to the same pathway-> can we assume

that their effects sum up?
4. GxE: are the variants protective for a given trait in an environment also
protective in every environment/exposure?
« What if in the future an exposure disappears? Introducing a protective
variant in an environment that no longer exists may not be useful
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Time to discuss on the polygenic editing of embryos

5. the model assumes that the degree of risk reduction would be the same
across the relevant population, but the genetic reasons may be different
« Some embryos might already be at low risk of disease because they are
carrying target protective alleles
» Others might be at low or high risk because of their burden of common
variants.

Nature 637, 554-556 (2025)=a 1 1 &
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Time to discuss on the polygenic editing of embryos

» Other issues:
» safety is far from guaranteed
* risks to children must be taken especially seriously:
» Unexpected outcomes
 early use of genetic testing of embryos to screen for chromosomal
abnormalities before implantation inadvertently worsened IVF outcomes (Yan
et al, 2021)
» Unlike somatic editing, any errors will affect every cell and organ in the future
child:
» misidentified causal alleles
* Pleiotropy
» Rare alleles may be rare for a reason
» Unpredictable interactions arising from new combinations of variants
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Time to discuss on the polygenic editing of embryos

 Ethical issues:
« The authors calculate that this technology will be so low risk and effective in

every individual that deploying it on a large scale might be justified, even for
individuals with low absolute risk of disease ¢,?

* Eugenics: unedited genomes are intrinsically worth less than edited ones, it
creates hierarchies of worth ¢ ?

SLALLO YYILLL  YYL PIUPUOL LIIAL LHIL 11100 HUIGH UOL UL HILHILAUIC SULIUVIIIL WIS s Llivi

this is clearly now advocacy for eugenics. That is certainly the way that Stephen Hsu,

Founder of Genomic Prediction, will read it along with all the other biotech
Musk/Zuckerberg wannabes who are going to do this whether we like it or not. It is
also probably what the 64% of Indian respondents they report to be in favor of
germline editing for intelligence want to read. I wonder how many midlife children

will sue their parents for wrongful editing once they learn that they took care of their
e AL e S i N AL e e W e D O NI e e LAY 2
https://genomestake.substack.com/p/genome-editing-and-eugenics
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Genome-wide Prediction in Animal and Plant breeding

Quantitative genetics is a cornerstone of both plant and animal breeding for the last
century

Genomic selection has led to the re-emergence of quantitative genetics as a framework
for incorporating marker and sequence information to supplement and complement
standard phenotypic descriptors and pedigree information (Hickey et al 2017)

Access to large-scale sequence and phenotypic information would provide
opportunities to unify breeding methods and tools across several plant and animal
species — Modernization of breeding programs (Hickey et al 2017)
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Animals

Domestication ~12,000 years ago
1725 —1795 Methodical selection, 1860
nbreeding and culling (Bakewell)

1935
1950

1953

1960
1972

1975

Concept of regression to describe
relationship between offspring and
parents (Galton)

Law of population genetics
(Hardy & Weinberg) 1 91 0

Population genetics introduced as
an extension of the laws of inheritance
(Fisher, Wright & Haldane)

Improved breeding methods (Lush)

Estimation of breeding values as
random effects (Henderson)
Model for DNA structure

(Watson & Crick)

Quantitative genetics (Falconer) 1 960
Genetic engingeering, first

recombinant DNA molecules (Berg)

Best linear unbiased prediction
(BLUP) (Henderson)

1980s Biotechnology, from the early 1980s

1990

2001

2013

Molecular markers used for improved
selection (Lande & Thompsoen)

Introduction and application of

genomic selection (Meuwissen 201 0
etal)

CRISPR—Cas9-based genome editing

Plants

Domestication ~12,000 years ago

1860s Discovery of the rules of inheritance (Mendel)

Pure-line breeding theory (Johannsen)
Hardy-Weinberg law

Exploitation of heterosis (Shull)

Modem pedigree selection (Nilsson—Ehle)

Mutation breeding (Stadler)

Concept of single-seed-descent breeding
method (Goulden)
Recurrent selection method of breeding (Hull)

Methods for double-haploid lines (Chase)
Model for DNA structure (Watson & Crick)

1970 Nobel Prize for the Green Revolution (Borlaug)

1980s Biotechnology, from the early 1980s

1983 Nobel Prize for discovery of mobile genetic
elements (McClintock)

1990 Molecular markers used for improved selection
(Lande &Thompson)

1994 First approval of commercial GM variety

1998 Best linear unbiased prediction based on trait
and marker data (TM-BLUP), a form of genomic
selection, introduced (Bernardo)

2001 Introduction of theoretical approaches to genomic
selection (Meuwissen et al.)

2010s Application of genomic prediction in plant breeding

2013 CRISPR-Cas9-based genome editing (H ickey et al 2017)

- ]
ﬁk’G E Figure 1 Some key milestones of selective animal and plant breeding. l_i c: t?.i"ﬁ.l—l




Differences in plant and animal breeding

Although there are conceptual similarities between animal and plant breeding, breeding

methods have diverged:

- Species specific characteristics: reproduction mode, # of progeny per cycle ...
- Plants: breeding since domestication; consisted mainly in selection (need for

hybridization recognized in the last 250 years (Kingsbury, 2009))
- Animals: a more structured approach adopted earlier than in plants (Bakewell, 18

century — herdbooks)

Although both plant and animal breeders deal with complex traits, individual mutations
with moderate to large effects have been exploited more importantly in plant breeding than

in animal breeding (Hickey et al, 2017)

G enome-wide predicti@én



Differences in plant and animal breeding

Other differences:

e Plant breeders used well-designed trials to measure phenotype to inform their
selection, and animal breeders use complex statistical methods to estimate
breeding value

e Animal breeders use information from the relatives of selection candidates (milk
yield in bulls), with low heritability or measured late in the breeding process
(longevity); Plant breeders don’t have the problem of ‘sex-limited’ traits and could
increase the accuracy growing more plants from the same cultivar
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Genomic selection in plant and animal species

GS was adopted rapidly in the more technologically developed livestock sectors (dairy
cattle)

Major international seed companies are routinely using genomic selection
Many public-sector breeding programs are exploring this technology
Bottleneck:

e Computational and recording infrastructure
e Genotypic and phenotypic data to implement GS
e Complexity of genomes of many plant species
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Comparison of plant (inbreeding cereal) and animal breeding approaches

Year Generation
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Joining efforts between animal and plant breeders

Plant and animal breeders will benefit from working together to address problems that
are common to the two disciplines, such as prediction of traits in structured
populations (Schén and Simianer, 2015)
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Examples of GS in animal and plant breeding




Reference population: Development of prediction equations

Associations
Phenotypes between SNP and
+ phenotypes:
Thousands of SNP Prediction
Equations

”
”

Genetic - = -

relationships | 27

-
v Thousands of SNP
N W BENTY I
. Prediction Equations

Main population: Application of prediction equations

Groen Kennisnet (2017), Textbook animal breeding and genetics
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Milk production

data from

) Great
progeny of Bull Y
Bull B is Sons of Grand- B are available i‘;‘\ =S
born and Bull B sons of to calculate his i i
selected - EBV jull B
re born Bull B ao e
based on e : L are bom,
EBV are bomn.
GEBV.
Oyr 1yr 1yr9mo 2yr9mo 3yré6mo 4yr6mo Syr3mo
Bull B \
reaches C - Sons of Bull Grandsons
mnterval =
sexual Sinas B reach of Bull B
maturity sexual reach sexual

and is used
as a sire ol

sons

Figure 2. Timeline of an aggressive artificial insemination breeding program based on the use of genomic bulls as sires of
sons. GEBV = genomic estimated breeding value, EBV

maturity and
are used as

SIres of sons.

estimated breeding value

Animal Frontiers

maturity and
are used as

sires of sons,

Schefers and Weigel 2012, Vol. 2, No. 1
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Germplasm Germplasm
Sampling Sampling

Target Population Target Population
of Environments of Environments

Genotyping  Envirotyping /

Intermediate traits

Multi-environment trials
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Accuracy of Genomic predictions

Quality of phenotypes in the
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Groen Kennisnet (2017), Textbook animal breeding and genetics
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Similarities and differences in performance of PRS and GS

Both PRS and GEBV are estimates of the additive genetic value of a trait of an
individual (Wray et al, 2019)

Higher proportion of genetic variance explained by SNPs in livestock than in humans
is due to the greater LD in livestock

SNP-based heritability estimates in humans are lower than those in animal, due to

differences in recent effective sample size:

e In animals, common SNPs tag causal variants at much greater physical distance,
compared to in humans, and including across chromosomes
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Similarities and differences in performance of PRS and GS

* Different in purpose:

e PRS: predict the future phenotype of an individual (efficacy depends on the SNP
h2)
e GEBV: predict the average value of an animal’s genetic material to its offspring

The use of summary statistic data for the genotype effect size estimates distinguishes
PRS from phenotypic prediction approaches that exploit individual-level data only

In the latter, genotype effect sizes are usually estimated in joint models of multiple
variants and prediction performed simultaneously, using approaches such as best
linear unbiased prediction or (LASSO)
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Similarities and differences in performance of PRS and GS

* Effect sizes estimation:

e PRS: usually, one SNPs at a time
e GEBV: all SNPS jointly fitted




Topics

GP in human Polygenic risk GP in animal and Comparison between
genetics scores plant breeding PRS and GS

Background Background Overview Overview

Particularities PRS analysis process Comparison of plant
Accuracy and animal breeding

GWAS in human Limitations approaches

genetics Other considerations

Examples Accuracy

Resources
PRS applications
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