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Background

Next-generation sequencing (NGS) has revolutionized human, plant and animal
research by providing powerful genotyping methods

They provide a straightforward workflow to identify, validate, and screen genetic
variants in a short time with a low cost

One limitation of SNP genotyping arrays is that they assay only a small fraction of
human genetic variation

The variants assayed on SNP arrays are chosen based on the linkage disequilibrium
structure of the human or other species genome
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Background

Without imputation, GWASs that test variants on a commercial genotyping array must
rely on pairwise linkage disequilibrium between an assayed SNP and a causal variant
to detect association between the assayed SNP and trait

However, rare variants, which are more often associated with dramatic functional
consequences, tend to have low levels of pairwise linkage disequilibrium with common

variants on SNP genotyping arrays

Although NGS have significantly reduced the cost of sequencing a genome, it remains
prohibitively expensive to whole-genome sequence millions of samples
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Imputation

Genotype imputation is a process of estimating missing genotypes from the haplotype

or genotype reference panel

Imputation works by copying haplotype segments from a densely genotyped reference
panel into individuals typed at a subset of the reference variants
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Imputation

Advantages:
e Reconstruction of rare-variant genotypes
e Boost the power of detecting SNPs in GWAS
e Integrate multiple studies for meta-analysis
e Building PRS
e Guide fine mapping studies
e Reduces cost

e To estimate other types of genetic variations, such as CNV or classical HLA alleles
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Tools

Phasing methods: since genotype imputation is a highly computationally intensive
process, prephasing may reduce the computational burden

e MACH: it uses an HMM model (http://csg.sph.umich.edu//yli/mach/download/)
e SHAPEIT2: haplotype estimation method using HMM on a graph structure of

haplotypes (https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html)

Imputation tools:

e Beagle (https://faculty.washington.edu/browning/beagle/beagle.html)

e IMPUTE2 (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html)
e Minimac (https://genome.sph.umich.edu/wiki/Minimac#Download)
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Imputation strategies

e MACH + Minimac
e SHAPEIT2 + IMPUTE2
e [MPUTE2

e Beagle




Imputation strategies

Most of the available tools rely on a general framework that uses a hidden Markov
model (HMM) to describe the data (Li and Stephens model)

e The observed genotypes of unknown phase in a study sample represent the
observed data of the HMM

e An underlying and unobserved set of phased genotypes represent the hidden
states of the HMM
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Li and Stephens model state space
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Figure 2 k h 1 f
An illustration of genotype imputation, showing the process of imputation for a study haplotype (Sg) marker to the last reference
genotyped at 6 markers using a reference panel of sequenced haplotypes at 21 markers. The alleles in Sg are
used to match short segments from the reference panel. For example, in the first genomic segment, the

marker Das et al 2018
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An illustration of genotype imputation, showing the process of imputation for a study haplotype (Sg)

Figure 2

genotyped at 6 markers using a reference panel of sequenced haplotypes at 21 markers. The alleles in Sg are
used to match short segments from the reference panel. For example, in the first genomic segment, the
alleles T and G imply that the corresponding segment might have been copied from haplotype X3. In the
second segment, the alleles A and T imply that haplotype X5 might have been copied. Proceeding similarly,

the study haplotype can be represented as a mosaic of DNA segments from haplotypes X3, X5, and Xp.
Consequently, the missing sites can be imputed to obtain the final imputed haplotype, Si.

e A new segment in the
mosaic begins when the
path switches reference
haplotypes (rows) between
one marker and the next

Das et al 2018
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Li and Stephens model state space
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Li and Stephens model state space
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Li and Stephens model state space
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An illustration of genotype imputation, showing the process of imputation for a study haplotype (Sg)

Figure 2

genotyped at 6 markers using a reference panel of sequenced haplotypes at 21 markers. The alleles in Sg are
used to match short segments from the reference panel. For example, in the first genomic segment, the
alleles T and G imply that the corresponding segment might have been copied from haplotype X3. In the
second segment, the alleles A and T imply that haplotype X5 might have been copied. Proceeding similarly,

the study haplotype can be re 2 , X5, and Xg.

Consequently, the missi

e The probability that the
target haplotype carries a
particular allele is the sum
of the state probabilities
corresponding to reference
haplotypes that carry the
allele

Das et al 2018
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Table 1

Genotype imputation tools that employ a hidden Markov model (HMM)

Computational
Tool Year Description of state space complexity HMM parameter functions
fastPHASE 2006 All genotype configurations Maximizadon-step Depends on recombination and
from a fixed number of linear in number of mutation rates; parameters are fit
localized haplotype clusters haplotypes, quadratic using an expectation—-maximization
in number of clusters algorithm
IMPUTE 2007 All genotype configurations Quadratic in number of | Depends on a fine-scale recombination
from all reference haplotypes haplotypes map that is fixed and provided
internally by the program
Beagle 2007 All genotype configurations Quadratic in number of | Empirical model with no explicit
from a variable number of haplotypes parameter functions
localized haplotype clusters
IMPUTE2 2009 All reference haplotypes Phasing quadratic in Same as IMPUTE
number of haplotypes,
imputation linear in
number of haplotypes
MaCH 2010 All genotype configurations Quadratic in number of | Depends on recombination rate,
from all reference haplotypes haplotypes mutation rate, and genotyping error;
parameters are fit using a Markov
chain Monte Carlo or
expectation-maximization algorithm
Minimac and 2012 All reference haplotypes Linear in number of Same as MaCH
Minimac2 haplotypes
Minimac3 2016 All unique allele sequences Linear in number of Same as MaCH, but parameter
observed in reference data in a haplotypes estimates are precalculated and fixed
small genomic segment
Beagle 4.1 2016 All reference haplotypes at Linear in number of Depends on recombination rates and
genotyped markers haplotypes error rates, which are precalculated
and fixed
Minimac4 2017 Collapsed allele sequences from | Linear in number of Same as Minimac3
reference data that match at haplotypes
genotyped positions in small
ZEnomic segments
IMPUTE4? 2017 All possible reference Linear in number of Same as IMPUTE2
haplotypes haplotypes
Beagle 5.0 2018 A user-specified number of Linear in number of Same as Beagle 4.1
reference haplotypes haplotypes Das et al 2018

This table describes the typical state space and parameter functions used to model the Li and Stephens framework. Minimac and IMPUTE?2 were the first

ictiaéan

tools to use the prephasing approach. Minimac3 and Beagle 4.1 exploit local haplotype redundancy to reduce the size of the state space and hence the
computational burden.
*IMPUTE# uses the same HMM as IMPUTE2; however, to reduce memory usage and increase speed, it uses compact binary data structures and takes

advantage of high correlations between inferred copving states in the HMM to reduce computation.



Beagle http://faculty.washington.edu/browning/beagle/beagle.html

Software for phasing genotypes and for imputing ungenotyped markers
It is a hidden Markov model, which uses a clustering graphical model on haplotypes
Different versions have different characteristics:

e BEAGLE 5.0 and 5.1: default settings show better performance than BEAGLE 4.0
and 4.1, especially in less diverse populations

e BEAGLE 5.0 and 5.1: reduced computing times and memory requirements

e BEAGLE 4.0: can incorporate pedigree data and genotype likelihoods

e Up to BEAGLE 4.0 all markers are assumed to be equidistant,whereas in BEAGLE
41, 5.0 and 5.1 the genetic distance between markers can be provided

ieoori1o
ot
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IMPUTEZ (http://mathgen.stats.ox.ac.uk/impute/impute v2.html)

It uses a McMC algorithm in which each iteration includes two-steps, phasing and
imputation, to maximize the posterior probabilities of the missing alleles for imputation

First step: it infers haplotype conditioning from information of the study sample,
reference, and recombination rate using a Markov Chain Monte Carlo approach

Second step: it uses a hidden markov model to impute the missing genotypes on the
haplotypes inferred in the first step

This MCMC algorithm is run for a number of iterations (typically 30, including 10
burn-in iterations), then the probabilities from Step 2 are averaged across iterations to
produce marginal posterior genotype probabilities at each untyped SNP

DG enome-wide predictién
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Minimac (https://github.com/statgen/Minimac4)

It relies on a two step approach:

1. Samples that are to be analyzed must be phased into a series of estimated
haplotypes.
2. Imputation is carried out directly into these phased haplotypes

It uses state space reduction HMM to reduce the running time

https://genome.sph.umich.edu/wiki/Minimac:_1000_Genomes_Imputation_Cookbook#Minimac_Imputation

Howie B, Fuchsberger C, Stephens M, Marchini J, and Abecasis GR. Fast and accurate genotype
imputation in genome-wide association studies through pre-phasing. Nature Genetics 2012

TG A
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Online imputation servers

Phasing and imputation servers provide an alternative way to perform phasing and
imputation from large reference panels that have restrictive sample consents,

For example, the HRC reference panel may be used for genotype phasing and
imputation but not for any other purpose

(https://www.ebi.ac.uk/ega/studies/EGAS00001001710)
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Online imputation servers

https://[imputationserver.sph.umich.edu/index.html#!

Michigan Imputation server

Researcher Imputation server Researcher

B
e

The researcher uploads The server performs quality When the data are ready,
genome-wide association control, prephasing, imputation, the researcher receives a
study data using SFTP or and encryption. notification email with a
Globus. download link and a onetime
password for decryption.
The data are deleted from the

server after seven days.
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Online imputation servers

!' Sanger Imputation Service X +

& C & imputation.sanger.ac.uk

Sanger Imputation Service Home  About Instructions v~ Resources  Status

Sanger Imputation Service

This is a free genotype imputation and phasing service provided by the Wellcome Sanger Institute. You
can upload GWAS data in VCF or 23andMe format and receive imputed and phased genomes back. Click
here to learn more and follow us on Twitter.

¥ @sangerimpute
Before you start Ready to start? News o
Be sure to read through the instructions. If you are ready to upload your data, please fill 30/1/2017
. : in the details below to register an imputation Support for chromosome X has been
You will need to set up a free account with o b o
, and/or phasing job. If you need more added to all pipelines. PBWT has been
Globus and have Globus Connect running i B i i i
el information, see the about page. See also our updated to increase imputation accuracy
at your institute or on your computer to g :
. 3 Privacy and Security statement. of dosages and fix some bugs. See
transfer files to and from the service.
Changelog.
Full name
31/10/2016
New African Genome Resources panel
Organisation with 9,912 haplotypes (6,230 African) is
now available.
Email address 11/04/2016
Thanks to EAGLE2, we can now return . .
e prased daa. o HRCpaneitasben 11 £ S/ /imputation.sanger.ac
Globus user identity updated to r1.1 to fix a known issue. See T T A :
Changelog for more details. T . B

=


https://imputation.sanger.ac.uk/

Important considerations

It is advisable to remove low-quality variants and individuals (standard GWAS
quality control filterings)
Convert the genotype data to the build of the reference panel

All panels have their allele codings aligned to a fixed reference:

o  In human genetics, the genome of reference

o  Softwares as IMPUTE2 will align the strand between panels (flipping A/C to G/T in the reference)
except for ambiguous alleles (A/T; G/C)

o  For ambiguous alleles, the MAF can be used to get the alignment except for those with MAF near
50%

o Itis important to check if the id of the SNP in the study sample corresponds to that in the reference
population (SHAPEIT2 and IMPUTE2)

Chromosome X: specific options

enome-wide predictién



Evaluate the imputation performance

e r’:also known as the info parameter is the squared Pearson correlation coefficient

between imputed genotype dosages (0-2) and masked sequence genotypes {0, 1, 2}:
o  The info metric is commonly used to remove poorly imputed SNPs from their
association testing
o There is no universal cutoff value for post-imputation SNP filtering:
m Common cutoffs: 0.3 and 0.5
m SNPs to impute HLA alleles — info threshold = 0.9

e Concordance rate: the percentage of correctly imputed genotypes of the test set

enome-wide predicti@n



Factors affecting the imputation performance

e Imputation strategy: software, phasing..




Allele specific error rate depending on the allele frequency under different BEAGLE

settings for the maize data
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Fig. 2. a, b Imputation accuracy of the 112 kinds of strategies for ~SHAPEIT2+IMPUTE2 with two references (IKG_ALL and 1KG_
' o chrl and chr22. The x-axis represents SNP density. The y-axisrep- ~ EAS) for chrl. d Percentage discordance versus percentage miss- t@as 1@
‘s\-" 11 ‘resents the imputation accuracy, which is the rate of consistent ing genotypes for calling thresholds ranged from 0.33 to 0.9 for Eﬁr‘-
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Factors affecting the imputation performance

e Imputation strategy: software, phasing..

e Reference panel: different strategies work better with different reference panels




Reference population

It is important to consider the population similarity between the reference and to-be-imputed
population

If no knowledge of the genetic structure, it is better to use all available individuals genotyped
under high marker density for the reference panel (Pook et al, 2020)

In case the reference population has a lot of stratification, the design of a good reference panel is
more difficult, as genetically distant individuals may introduce more noise than relevant
information to the model (Pook et al, 2020)

If most of the genetic diversity of the study sample can be represented in a subset of the
individuals in a reference panel, excluding genetically distant individuals improves imputation

performance (Pook et al, 2020)

enome-wide predictién



Reference population

Composite reference population may increase imputation accuracy in diverse samples
(beef cattle populations)
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Table 2 The most commonly used public reference panels to date
Number of | Number of sites Average
Reference reference (autosomes + X sequencing Ancestry Publicly Indels
panel samples chromosome) coverage distribution | available | available Reference
International 1,011 1.4 million NA? Multiethnic Yes No 47
HapMap
Project phase 3
1000G phase 1 1,092 28.9 million 2-6% Multiethnic Yes Yes 1
1000G phase 3 2,504 81.7 million 7x genomes, Multiethnic Yes Yes 3
65 X exomes
UKI10K Project | 3,781 42.0 million 7% genomes, European Yes Yes 89
80x exomes
HRC 32,470 40.4 million 4-8xb Predominantly Partiallyd No 69
European®
TOPMed 60,039 239.7 million 30x Multiethnic Partially® Yes 71

Abbreviations: 1000G, 1000 Genomes Project; HRC, Haplotype Reference Consortium; indel, insertion or deletion; LOF, loss of function; NA, not

applicable; TOPMed, Trans-Omics for Precision Medicine.
¥The International HapMap Project phase 3 data were genotyped on the Illumina Human1M and Affymetrix 6.0 SNP arrays.
®The HRC panel was obtained by combining sequencing data across many low-coverage (4-8x) and a few high-coverage sequencing studies.
“The only non-European samples in the HRC panel are through the 1000G reference panel (which was a contributing study).
dMost of the HRC samples (~27,000) are available for download through controlled access from the European Genome-Phenome Archive.
¢Some of the TOPMed samples (~18,000) are available for download through controlled access from the Database of Genotypes and Phenotypes (dbGaP).




Table 1.

Reference panels - Examples "

Species No. of chromosome No. of sample No. of SNPs

http://gong_lab.hzau.edu.cn/Animal_Impute | |
Ailuropoda melanoleuca (Giant panda) 28 354 scaffolds 34 4671936
DBI #! l Anas platyrhynchos (Duck) 30 106 12682400

Bos taurus (Cattle) 30 93 41808 907

Itis a pub]jc database with genomic FiiallshibalisiSam Bufhile) 24 33245017

Reference panel

Canis familiaris (Dog) 39 61065811

reference panels of 13 animal species for

Capra hircus (Goat) 30 29889815

online genotype imputation, genetic variant

Equus caballus (Horse) 3 19257635
SearCh, and free dOWHload Equus ferus (Tarpan) 32 7809754

Gallus gallus (Chicken) 35 26 864 273
Ovis aries (Sheep) 27 29889815
Sus scrofa (Pig) 19 40323709

Macaca mulatta (Monkey) 21 47332297

Oryctolagus cuniculus (Rabbit) 22 40420337

Yang et al, 2020
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Factors affecting the imputation performance

e Imputation strategy: software, phasing

e Reference panel




Factors affecting the imputation performance

e Imputation strategy: software, phasing
e Reference panel

e Sample size
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Factors affecting the imputation performance

Imputation strategy: software, phasing
Reference panel
Sample size

Minor allele frequency of the SNPs
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Allele specific error rate depending on the allele frequency under different BEAGLE

settings for the maize data
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Factors affecting the imputation performance

Imputation strategy: software, phasing
Reference panel

Sample size

Minor allele frequency of the SNPs

SNP density/coverage
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Fig. 2. a, b Imputation accuracy of the 112 kinds of strategies for ~SHAPEIT2+IMPUTE2 with two references (IKG_ALL and 1KG_
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Factors affecting the imputation performance

Imputation strategy: software, phasing
Reference panel

Sample size

Minor allele frequency of the SNPs
SNP density/coverage

LD pattern
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Factors affecting the imputation performance

Imputation strategy: software, phasing
Reference panel

Sample size

Minor allele frequency of the SNPs
SNP density/coverage

LD pattern
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Computational burden diminish the error rate
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